The aggregation of insulin, to afford amyloidogenic fibers, is a well-studied phenomenon, which has interesting biological ramifications and pharmaceutical implications. These fibers have been ascribed an intriguing role in certain disease states and stability of pharmaceutical formulations of this hormone. The present study describes the design and inhibitory effects of novel peptide conjugates toward fibrillation of insulin as investigated by thioflavin T assay, circular dichroism (CD), and atomic force microscopy (AFM). Possible interaction of insulin with peptide-based fibrillation inhibitors is also probed by other solution phase studies, which reveal an important role of aromatic π-π interactions in the inhibition process. CD studies suggest that a freshly prepared solution of insulin, rich in α-helices, transforms into a β-sheet structure upon aggregation, which gets perturbed in the presence of synthesized inhibitors. Therefore, these newly designed peptides could serve as potential leads as inhibitors of insulin aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp400364w | DOI Listing |
Chemistry
January 2025
Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.
Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFbioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Enamine Ltd 78 Winston Churchill Street Kyiv 02094 Ukraine +380 67 656-4026 https://www.enamine.net.
Sortase A-mediated ligation (SML) or "sortagging" has become a popular technology to selectively introduce structurally diverse protein modifications. Despite the great progress in the optimization of the reaction conditions and design of miscellaneous C- or N-terminal protein modification strategies, the reported yields of conjugates are highly variable. In this study, we have systematically investigated C-terminal protein sortagging efficiency using a combination of several rationally selected and modified acceptor proteins and a panel of incoming surrogate non-peptidic amine nucleophile substrates varying in the structural features of their amino linker parts and cargo molecules.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!