Depth profiling of metal overlayers on organic substrates with cluster SIMS.

Anal Chem

The Pennsylvania State University , Department of Chemistry, University Park, Pennsylvania 16802, United States.

Published: November 2013

Molecular depth profiling of organic thin films by erosion with energetic cluster ion beams is a unique aspect of secondary ion mass spectrometry (SIMS) experiments. Although depth profiles of complex multilayer organic structures can be acquired with little damage accumulation and with depth resolution of <10 nm using either C60(+) or Arx(+) with x = 500-5000, hybrid materials consisting of both organic and inorganic layers often yield poor results. To unravel the factors that lead to this difficulty, we developed a model system composed of a thin gold layer of 1.4 to 3.5 nm deposited either on top of or sandwiched within a cholesterol thin film matrix which is several hundred nanometers thick. For these systems, the results show that by erosion with a 40 keV C60(+) beam, reliable depth profiles can always be acquired as indicated by the presence of a steady state molecular ion signal. During the erosion process, however, gold atoms from the gold overlayer are implanted into the cholesterol matrix beneath it, resulting in a reduced sputter yield, an increase in the amount of cholesterol fragmentation and an increase in the thickness of the cluster ion-induced altered layer. The results also show that the effects of the metal film on the organic substrate are independent of the gold film thickness once the film thickness exceeds 1.4 nm. In general, this model study provides mechanistic insight into the depth profiling of heterogeneous thin film structures and offers a possible path for improving the quality of the depth profiles by employing low energy atomic ion sputtering in the region of the metal layer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac402658rDOI Listing

Publication Analysis

Top Keywords

depth profiling
8
depth
4
profiling metal
4
metal overlayers
4
overlayers organic
4
organic substrates
4
substrates cluster
4
cluster sims
4
sims molecular
4
molecular depth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!