Resonance Raman spectra of a perylene bis(dicarboximide) chromophore in ground and lowest triplet states.

J Phys Chem A

Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, United States.

Published: September 2013

Resonance Raman spectroscopy is employed to probe the ground (S0) and lowest triplet (T1) excited states of a perylene bis(dicarboximide) (PDI) dimer. Four bands at ~1324, 1507, ~1535, and 1597 cm(-1) are signatures of the T1 excited state; a fifth band at ~1160 cm(-1) is tentatively assigned. Density functional calculations of an asymmetrically substituted PDI monomer match the experimental bands of the PDI dimer in both S0 and T1 states. The match supports a T1 excited state that is localized on a single PDI moiety of the dimer. The normal modes of the asymmetrically substituted PDI are correlated with ones calculated for the unsubstituted PDI in the D2h point group. Patterns in the Raman intensities are consistent with an A-term mechanism of enhancement. The positions of six bands are predicted for the resonance Raman spectrum of unsubstituted PDI in its T1 excited state. The spectra and normal-mode analysis reported here are expected to facilitate future studies of singlet fission in PDI crystals or other assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp407879kDOI Listing

Publication Analysis

Top Keywords

resonance raman
12
excited state
12
perylene bisdicarboximide
8
ground lowest
8
lowest triplet
8
pdi
8
pdi dimer
8
asymmetrically substituted
8
substituted pdi
8
unsubstituted pdi
8

Similar Publications

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Resonance SERS probe based on the bifunctional molecule IR808 combined with SA test strips for highly sensitive detection of monkeypox virus.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:

As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.

View Article and Find Full Text PDF

Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.

View Article and Find Full Text PDF

Factors that Affect Quantification in Surface-Enhanced Raman Scattering.

ACS Nano

January 2025

Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada.

Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!