Characterization, design, and function of the mitochondrial proteome: from organs to organisms.

J Proteome Res

Departments of Physiology and Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive, MRL Building, Suite 1609, Los Angeles, California 90095, United States.

Published: February 2014

Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076470PMC
http://dx.doi.org/10.1021/pr400539jDOI Listing

Publication Analysis

Top Keywords

mitochondrial proteome
16
mitochondrial
12
organs organisms
12
proteome organs
8
mitochondrial proteomes
8
well relevant
8
proteome
5
characterization design
4
design function
4
function mitochondrial
4

Similar Publications

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Incorporation of microgastropoda species provides novel insights into phylogeny of Trochoidea (Gastropoda: Vetigastropoda).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.

Trochoidea is the richest and most diverse group within Vetigastropoda, serving as one of the main focuses on studies of marine ecology and systematics. Both morphological and molecular studies have sought to resolve the phylogenetic framework of Trochoidea; however, the phylogenetic relationships among some lineages remain controversial. In order to explore the phylogenetic relationships within Trochoidea, we sequenced the mitochondrial genomes of 9 trochoids and analyzed them with data from 38 previously published mitochondrial genomes and 27 transcriptomic data representing 11 families within this group.

View Article and Find Full Text PDF

Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Vitrification of 3D-MSCs encapsulated in GelMA hydrogel: Improved cryosurvival, reduced cryoprotectant concentration, and enhanced wound healing.

Int J Biol Macromol

January 2025

State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Southwest United Graduate School, Kunming, Yunnan 650092, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China. Electronic address:

Compared to traditional 2D-cultured mesenchymal stem cells (MSCs), 3D-MSCs offer distinct advantages in disease treatment. However, large-scale culture of 3D-MSCs remains labor-intensive and time-consuming. Thus, developing cryopreservation method for 3D-MSCs is essential for clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!