We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4821166DOI Listing

Publication Analysis

Top Keywords

water
14
liquid water
12
model
8
many-body model
8
single polarizable
8
polarizable site
8
properties water
8
water properties
8
range temperatures
8
temperature pressure
8

Similar Publications

Assessing the impact of different solvents in the bacterial reverse mutation test.

Environ Mol Mutagen

January 2025

Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India.

The bacterial reverse mutation test is essential for identifying the mutagenic potential of chemicals. The solubility of the test substance is vital for achieving the recommended assay concentration. Preferred solvents like dimethyl sulfoxide and water are chosen for their compatibility and historical data.

View Article and Find Full Text PDF

Flexible bis-benzimidazole-based V-shaped amphiphilic probes (1 and 2) that form a fluorescent nanoscopic assembly in aqueous media have been designed. The ion-binding properties of compound 1 are investigated in both polar protic (water) and aprotic (acetonitrile) solvents. In acetonitrile, the compound shows a distinct chromogenic response towards Hg (LOD: 8.

View Article and Find Full Text PDF

Graphene-based supercapacitors have gained significant attention due to their exceptional energy storage capabilities. Despite numerous research efforts trying to improve the performance, the challenge of experimentally elucidating the nanoscale-interface molecular characteristics still needs to be tackled for device optimizations in commercial applications. To address this, we have conducted a series of experiments using substrate-free graphene field-effect transistors (SF-GFETs) and oxide-supported graphene field-effect transistors (OS-GFETs) to elucidate the graphene-electrolyte interfacial arrangement and corresponding capacitance under different surface potential states and ionic concentration environments.

View Article and Find Full Text PDF

Acid-Base Equilibrium of 5,5,6-Trihydroxy-6-Methyldihydropyrimidine-2,4(1,3)-Dione in the Gas Phase and in Water.

J Phys Chem A

January 2025

Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.

The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.

View Article and Find Full Text PDF

Background/objectives: Bone marrow (BM) adipocytes are critical in progressing solid tumor metastases and hematological malignancies across pediatric to aging populations. Single-point biopsies remain the gold standard for monitoring BM diseases, including hematologic malignancies, but are limited in capturing the full complexity of loco-regional and global BM microenvironments. Non-invasive imaging techniques like Magnetic Resonance Imaging (MRI), could offer valuable alternatives for real-time evaluation of BM diseases in both preclinical translational and clinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!