The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic β-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the β-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368913X673423 | DOI Listing |
J Diabetes Res
December 2024
Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response.
View Article and Find Full Text PDFCell Physiol Biochem
November 2024
Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
Background/aims: Gestational Diabetes Mellitus (GDM), a prevalent complication in pregnancy, is characterized by the Diabetes Association as diabetes diagnosed in the second or third trimester, often remaining asymptomatic. This study investigates the intricate effects of Streptozotocin on pregnant rats, unraveling its impact on Gestational Type 2 Diabetes (GTD). The research delves into the potential therapeutic roles of mesenchymal stem cells (MSCs) and olive leaf extract (OLE) in mitigating the consequences of Streptozotocin-induced pancreatic impairment.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
NHC Key Laboratory for Critical Care Medicine, School of Medicine, Tianjin First Central Hospital, Research Institute of Transplant Medicine, Organ Transplant Center, Nankai University, Tianjin, 300071, China.
Islet transplantation is a promising therapy for diabetes, yet the limited survival and functionality of transplanted islet grafts hinder optimal outcomes. Glucagon-like peptide-1 (GLP-1), an endogenous hormone, has shown potential to enhance islet survival and function; however, its systemic administration can result in poor localization and undesirable side effects. To address these challenges, we developed a novel peptide-based nanofiber hydrogel incorporating GLP-1 functionality for localized delivery.
View Article and Find Full Text PDFIntensive Crit Care Nurs
December 2024
Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium; UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia. Electronic address:
Objectives: To assess trends in surgical site infection (SSI) incidence in cardiosurgery following a quality improvement initiative in infection prevention and control (IP&C).
Methods: This is a historical cohort study encompassing a 10-year surveillance period (2014-2023) in a cardiosurgical department in a multi-organ transplant center. The study encompassed three periods: a baseline period (Phase_1: January 2014-December 2018); an implementation phase covering quality improvement initiatives targeting various aspects of IP&C including organizational factors, pre-operative, intra-operative, post-operative measures, and post-hospitalization care (Phase_2: January 2019-June 2021); a post-implementation phase (Phase_3: July 2021-September 2023).
Methods Mol Biol
December 2024
Precision Health Program, Michigan State University, East Lansing, MI, USA.
Pancreatic islet transplantation is a promising cell replacement therapy for patients with type 1 diabetes (T1D), an autoimmune disease that destroys insulin-producing islet β cells. However, the shortage of donor pancreatic islets significantly limits the widespread use of this strategy as a routine therapy. Pluripotent stem cell-derived insulin-producing islet organoids present a promising alternative β cell source for T1D patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!