The aim of this study was to assess the impact of environmental factors: cigarette smoking, dental amalgam fillings, eating habits and osteoporosis, on the concentrations of copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and mercury (Hg) in the bone of hip joint in patients in the Orthopedics Clinic in Szczecin, Poland. Amalgam dental fillings had an effect on the Cu concentration in the cartilage with the adjacent compact bone, and on Hg concentration in the spongy bone. The highest concentrations of Cu and Hg were found in people with multiple amalgam fillings. Smoking appeared to influence Pb concentration in the cartilage with the adjacent compact bone, and Cd concentration in the spongy bone. Increased Pb was detected in smokers, and increased Cd in non-smokers. Diets rich in fish and seafood correlated with Cd concentration in the cartilage with adjacent compact bone. The greatest concentration was in people who ate fish or seafood at least once a month.

Download full-text PDF

Source

Publication Analysis

Top Keywords

concentration cartilage
12
cartilage adjacent
12
adjacent compact
12
compact bone
12
environmental factors
8
hip joint
8
amalgam fillings
8
bone concentration
8
concentration spongy
8
spongy bone
8

Similar Publications

Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies.

Adv Healthc Mater

January 2025

Inserm UMR_S 1121, CNRS EMR 7003, Université Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, F-67000, France.

Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic multifactorial disease characterized by cartilage degeneration, pain, and reduced mobility. Current therapies primarily aim to relieve pain and restore function, but they often have limited effectiveness and side effects. Coixol, a bioactive compound from Coix lacryma-jobi L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!