The killer yeast species Pichiaacaciae produces a heteromeric killer protein, PaT, that causes DNA damage and arrests the cell cycle of sensitive Saccharomyces cerevisiae in the S phase. However, the mechanism by which DNA damage occurs remains elusive. A previous study has indicated that Orf2p, a subunit of PaT, specifically cleaves an anticodon loop of an S. cerevisiae transfer RNA (tRNA(Gln)mcm5s2UUG). This finding raised a question about whether the DNA damage is a result of the tRNA cleavage or whether Orf2p directly associates with and cleaves the genomic DNA of sensitive yeast cells. We showed that Orf2p cleaves genomic DNA in addition to cleaving tRNA in vitro. This DNA cleavage requires the same Orf2p residue as that needed for tRNA cleavage, His299. The expression of Orf2p, in which His299 was substituted to alanine, abolished the cell cycle arrest of the host cell. Moreover, the translation impairment induced by tRNA cleavage enabled Orf2p to enter the nucleus, thereby inducing histone phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775755PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075512PLOS

Publication Analysis

Top Keywords

dna damage
12
trna cleavage
12
dna cleavage
8
cell cycle
8
cleaves genomic
8
genomic dna
8
dna
6
orf2p
6
cleavage
5
evidence dna
4

Similar Publications

Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Chemoresistance severely deteriorates the prognosis of advanced gastric cancer (GC) patients. Several studies demonstrated that (HP)-positive GC patients showed better outcomes after receiving chemotherapy than HP-negative ones. This study aims to confirm the role of HP in GC chemotherapy and to study the underlying mechanisms.

View Article and Find Full Text PDF

Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB.

View Article and Find Full Text PDF

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!