Coated vesicles mediate the traffic of secretory and membrane cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The coat protein complex (COPII) involved in vesicle budding is constituted by a GTPase, Sar1, the inner coat components of Sec23/Sec24 and the components of the outer coat Sec13/Sec31A. The Ca(2+)-binding protein ALG-2 was recently identified as a Sec31A binding partner and a possible link to Ca(2+) regulation of COPII vesicle budding. Here we show that ALG-2/Ca(2+) is capable of attenuating vesicle budding in vitro through interaction with an ALG-2 binding domain in the proline rich region of Sec31A. Binding of ALG-2 to Sec31A and inhibition of COPII vesicle budding is furthermore dependent on an intact Ca(2+)-binding site at EF-hand 1 of ALG-2. ALG-2 increased recruitment of COPII proteins Sec23/24 and Sec13/31A to artificial liposomes and was capable of mediating binding of Sec13/31A to Sec23. These results introduce a regulatory role for ALG-2/Ca(2+) in COPII tethering and vesicle budding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777911PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075309PLOS

Publication Analysis

Top Keywords

vesicle budding
20
budding vitro
8
sec31a binding
8
copii vesicle
8
alg-2
6
copii
6
budding
6
vesicle
5
alg-2 attenuates
4
attenuates copii
4

Similar Publications

Continuity of Mitochondrial Budding: Insights from BS-C-1 Cells by In Situ Cryo-electron Tomography.

Microsc Microanal

January 2025

The Laboratory for Biomolecular Structures, Brookhaven National Laboratory, Upton, NY 11973, USA.

Mitochondrial division is a fundamental biological process essensial for cellular functionality and vitality. The prevailing hypothesis that dynamin related protein 1 (Drp1) provides principal control in mitochondrial division, in which it also involves the endoplasmic reticulum (ER) and the cytoskeleton, does not account for all the observations. Therefore.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Sterol regulatory element binding proteins (SREBPs) are transcription factors that reside in the endoplasmic reticulum (ER) membrane as inactive precursors. To be active, SREBPs are translocated to the Golgi where the transcriptionally active N-terminus is cleaved and released to the nucleus to regulate gene expression. Nuclear SREBP levels can be determined by immunoblot analysis; however, this method can only determine the steady-state levels of nuclear SREBPs and does not capture the actual status of activation.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules.

View Article and Find Full Text PDF

Lipid demixing reduces energy barriers for high-curvature vesicle budding.

Biophys J

December 2024

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Chemistry, The Fritz Haber Research Center, The Harvey M. Kruger Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem, Israel. Electronic address:

Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!