Bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) have been shown to exhibit a synergistic effect to promote bone repair and healing. In this study, we constructed a novel adenovirus with high coexpression of BMP2 and bFGF and evaluated its effect on osteogenic differentiation of goat bone marrow progenitor cells (BMPCs). Recombinant adenovirus Ad-BMP2-bFGF was constructed by using the T2A sequence. BMPCs were isolated from goats by density gradient centrifugation and adherent cell culture, and were then infected with Ad-BMP2-bFGF or Ad-BMP2. Expression of BMP2 and bFGF was detected by ELISA, and alkaline phosphatase (ALP) activity was detected by an ALP assay kit. In addition, von Kossa staining and immunocytochemical staining of collagen II were performed on BMPCs 21 days after infection. There was a high coexpression of BMP2 and bFGF in BMPCs infected with Ad-BMP2-bFGF. Twenty-one days after infection, ALP activity was significantly higher in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. Larger and more mineralized calcium nodules, as well as stronger collagen II staining, were observed in BMPCs infected with Ad-BMP2-bFGF than in those infected with Ad-BMP2. In summary, we developed a novel adenovirus vector Ad-BMP2-bFGF for simultaneous high coexpression of BMP2 and bFGF, which could induce BMPCs to differentiate efficiently into osteoblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854432PMC
http://dx.doi.org/10.1590/1414-431X20132929DOI Listing

Publication Analysis

Top Keywords

bmp2 bfgf
16
infected ad-bmp2-bfgf
16
high coexpression
12
coexpression bmp2
12
bmpcs infected
12
goat bone
8
bone marrow
8
marrow progenitor
8
progenitor cells
8
recombinant adenovirus
8

Similar Publications

This study aimed to evaluate the osteogenic potential of mesenchymal stromal cell (MSC) spheroids combined with the basic fibroblast growth factor (bFGF) in a mouse femur fracture model. To begin, MSC spheroids were generated, and the expression of key trophic factors (, and ) was assessed using quantitative PCR (qPCR). A binding assay confirmed the interaction between the bFGF and the spheroids' extracellular matrix.

View Article and Find Full Text PDF

Background: The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications.

View Article and Find Full Text PDF

Background: Regenerative endodontic procedures (REPs) offer the promise of restoring vitality and function to a previously necrotic and infected tooth. However, the nature of regenerated tissues following REPs remains unpredictable and uncontrollable. Decellularized extracellular matrix scaffolds have gained recent attention as scaffolds for regenerative endodontics.

View Article and Find Full Text PDF

Objective: To examine and talk about the mechanism of the Huoxue Jiegu compound capsule's effects on osteoblasts and the PI3K/Akt/mTOR signal pathway in rabbits suffering from tibial fractures.

Method: In vitro, CCK8 was used to assess the survival rates. Alizarinred staining was used to evaluate mineralized nodules.

View Article and Find Full Text PDF

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway.

Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T -segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!