In vitro trypanocidal activity of solamargine and extracts from Solanum palinacanthum and Solanum lycocarpum of Brazilian cerrado.

An Acad Bras Cienc

Departamento de Princípios Ativos Naturais e Toxicologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista/UNESP, Rodovia Araraquara – Jaú, Km 1, s/n, 14801-502 Araraquara, SP, Brasil.

Published: September 2013

The present investigation was to evaluate the potential trypanocidal activity of crude ethanolic extract of the fruits of Solanum palinacanthum, Solanum lycocarpum and the glycoalcaloid, solamargine. S. palinacanthum and S. lycocarpum fruit powders were submitted to exhaustively extraction with 96% ethanol and solamargine were isolated from the extract of S. palinacanthum. Both extracts and solamargine were analysed for trypanocidal activity by using MTT colorimetric assay. Extracts of S. palinacanthum showed to be more active (IC50 = 175.9 µg.ml-1) than S. lycocarpum (IC50 = 194.7 µg.ml-1). Solamargine presented a strong activity (IC50 = 15.3 µg.ml-1), which can explain the better activity of the both extracts. Benznidazol (IC50 = 9.0 µg.ml-1) is the only drug used to treat Chagas' disease. These findings demonstrate for the first time that ethanol extracts obtained from both fruits of S. palinacanthum and S. lycocarpum and also solamargine have a potential anti-trypanosomal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1590/S0001-37652013000300006DOI Listing

Publication Analysis

Top Keywords

trypanocidal activity
12
solanum palinacanthum
8
palinacanthum solanum
8
solanum lycocarpum
8
palinacanthum lycocarpum
8
activity
6
solamargine
6
palinacanthum
6
extracts
5
lycocarpum
5

Similar Publications

Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.

View Article and Find Full Text PDF

Alkaloids from spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities.

Int J Mol Sci

December 2024

Instituto de Pesquisas de Produtos Naturais Walter Mors (IPPN), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Bloco H, Rio de Janeiro 21941-599, RJ, Brazil.

, a genus within the Malvaceae family, is abundantly distributed in tropical and subtropical areas worldwide. Many species of this genus are widely utilized in various ways, including chewing, in folk medicine, acting as an anti-inflammatory agent, and treating gastrointestinal disorders, rheumatism, and asthma, among other conditions. These applications are largely due to their secondary metabolites, primarily quinolone alkaloids and cyclopeptides.

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.

View Article and Find Full Text PDF

This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC against the epimastigote form of T. cruzi.

View Article and Find Full Text PDF

Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!