We previously identified a novel baculovirus-encoded apoptosis suppressor, Apsup, from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Apsup inhibits the apoptosis of L. dispar Ld652Y cells triggered by infection with p35-defective Autographa californica MNPV (vAcΔp35) and exposure to actinomycin D or UV light. Here, we examined the functional role of Apsup in apoptosis regulation in insect cells. Apsup prevented apoptosis and the proteolytic processing of L. dispar initiator caspase Dronc (Ld-Dronc) in Ld652Y cells triggered by overexpression of Ld-Dronc, LdMNPV inhibitor-of-apoptosis 3 (IAP3), or Hyphantria cunea MNPV IAP1. In vAcΔp35-infected apoptotic Ld652Y cells, Apsup restricted apoptosis induction and prevented processing of endogenous Ld-Dronc. Conversely, upon RNA interference (RNAi)-mediated silencing of apsup, LdMNPV-infected Ld652Y cells, which typically support high-titer virus replication, underwent apoptosis, accompanied by the processing of endogenous Ld-Dronc. Furthermore, endogenous Ld-Dronc coimmunoprecipitated with transiently expressed Apsup, indicating that Apsup physically interacts with Ld-Dronc. Apsup prevented the apoptosis of Sf9 cells triggered by vAcΔp35 infection but did not inhibit apoptosis or activation of caspase-3-like protease in vAcΔp35-infected Drosophila melanogaster S2 cells. Apsup also inhibited the proteolytic processing of L. dispar effector caspase Ld-caspase-1 in the transient expression assay but did not physically interact with Ld-caspase-1. These results demonstrate that Apsup inhibits apoptosis in Ld652Y cells by preventing the proteolytic processing of Ld-Dronc. Together with our previous findings showing that Apsup prevents the processing of both overexpressed Ld-Dronc and Bombyx mori Dronc, these results also demonstrate that Apsup functions as an effective apoptotic suppressor in various lepidopteran, but not dipteran, insect cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838142PMC
http://dx.doi.org/10.1128/JVI.02065-13DOI Listing

Publication Analysis

Top Keywords

ld652y cells
20
proteolytic processing
16
apsup
14
cells triggered
12
cells apsup
12
endogenous ld-dronc
12
apoptosis
10
cells
9
apoptosis suppressor
8
suppressor apsup
8

Similar Publications

P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

Virus Res

April 2017

Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan. Electronic address:

We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells.

View Article and Find Full Text PDF

We previously identified a novel baculovirus-encoded apoptosis suppressor, Apsup, from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Apsup inhibits the apoptosis of L. dispar Ld652Y cells triggered by infection with p35-defective Autographa californica MNPV (vAcΔp35) and exposure to actinomycin D or UV light.

View Article and Find Full Text PDF

Degradation of rRNA in BM-N cells from the silkworm Bombyx mori during abortive infection with heterologous nucleopolyhedroviruses.

J Gen Virol

September 2013

Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

Cell lines derived from the silkworm, Bombyx mori, are only permissive for B. mori nucleopolyhedrovirus (NPV), with other NPVs generally resulting in abortive infection. Here, we demonstrate that rRNA of B.

View Article and Find Full Text PDF

Cloning and functional characterization of the Lymantria dispar initiator caspase dronc.

Biochem Biophys Res Commun

June 2013

Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.

Ld652Y cells from the gypsy moth, Lymantria dispar, are extremely sensitive to various apoptotic stimuli, whereas BM-N cells from the silkworm, Bombyx mori, are relatively resistant to apoptotic stimuli. We previously cloned and characterized a B. mori homologue (bm-dronc) of Drosophila melanogaster dronc.

View Article and Find Full Text PDF

Ld652Y cells derived from the gypsy moth, Lymantria dispar, are permissive for productive infection with L. dispar multiple nucleopolyhedrovirus (LdMNPV), but undergo apoptosis upon infection with various other NPVs, including those isolated from Bombyx mori, Hyphantria cunea, Spodoptera exigua, Orgyia pseudotsugata, and Spodoptera litura. In this study, we examined whether LdMNPV-encoded inhibitor of apoptosis 2 (Ld-IAP2) and 3 (Ld-IAP3) are involved in apoptosis suppression in LdMNPV-infected Ld652Y cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!