Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

Nanotechnology

Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering, East Lansing, MI 48824, USA.

Published: October 2013

A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/42/424005DOI Listing

Publication Analysis

Top Keywords

llzo
9
cubic li7la3zr2o12
8
ionic conductivity
8
sol-gel llzo
8
solid-state llzo
8
synthesis nano-scale
4
nano-scale fast
4
fast ion
4
ion conducting
4
conducting cubic
4

Similar Publications

In situ formation of LiN interlayer enhancing interfacial stability of solid-state lithium batteries.

J Colloid Interface Sci

January 2025

School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, PR China. Electronic address:

The uneven deposition of lithium ions has raised safety concerns related to the growth of lithium dendrites on the surface of lithium metal batteries. In this work, an in situ formed LiN interlayer is introduced to regulate the deposition of lithium ions on the lithium metal surface effectively. The LiN interlayer is formed on the lithium metal surface by the reaction of nitrogen gas (N) released from the reaction layer at a specific temperature.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium metal batteries are promising for high energy density and safety, but issues like voids at the anode/electrolyte interface during lithium stripping can hurt stability.
  • Stack pressure and operating temperature can induce creep deformation in lithium metal, potentially improving interfacial issues caused by these voids, although understanding of these effects is still lacking.
  • A new coupled model (EDMP-VE) has been developed to study the influence of pressure and temperature on void evolution, showing that higher conditions can enhance void healing and stabilize interfaces by reducing void expansion and promoting filling.
View Article and Find Full Text PDF

All-solid-state batteries (ASSBs) with a garnet-type solid electrolyte have been considered promising alternatives to traditional batteries with a liquid organic electrolyte, due to their enhanced safety and ability to accommodate high energy density electrodes. In this study, we conducted a comprehensive investigation of the high-temperature chemical compatibility between the garnet-like LiGaLaZrO (Ga-LLZO) electrolyte and high-energy-density Li-rich layered LiNiMnO cathode (LNM). Our findings suggest that a high temperature reaction between the Li-rich cathode and Ga-LLZO occurs at 700-900C depending on the form of reactants.

View Article and Find Full Text PDF

High-Quantum-Efficiency Pr-Doped LiLaZrO Garnet and Associated Temperature-Sensing Performance.

Inorg Chem

January 2025

State Key Laboratory of Crystal Materials and School of Crystal Materials, Shandong University, Jinan, Shandong 250100, China.

Article Synopsis
  • Researchers developed a new Pr-doped luminescent thermometer using a tetragonal-phase LiLaZrO (Pr:LLZO) garnet, which shows enhanced temperature-sensing performance.
  • The luminescent properties of Pr:LLZO exhibit a high room-temperature photoluminescence quantum efficiency of 77.48%, surpassing traditional Pr-doped garnet phosphors.
  • The study highlights distinct quenching mechanisms in Pr:LLZO compared to other materials, offering insights for designing effective luminescent thermometers.
View Article and Find Full Text PDF

Unveiling Surface Chemistry of Ultrafast-Sintered LLZO Solid-State Electrolytes for High-Performance Li-Garnet Solid-State Batteries.

Chem Mater

November 2024

Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.

Article Synopsis
  • Ultrafast (UF) sintering is a novel technique for creating LiLaZrO (LLZO) solid-state electrolytes, crucial for the development of solid-state batteries.
  • This study investigates the surface chemistry of UF-sintered LLZO and finds significant contamination, particularly from LiO, which affects electrochemical performance.
  • An additional heat treatment at 900 °C post-UF sintering effectively reduces this contamination, leading to better performance in Li/LLZO/Li symmetric cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!