Background: Recently, high-dose oral synthetic delta-9-tetrahydrocannabinol (THC) was shown to alleviate cannabis withdrawal symptoms. The present data describe cannabinoid pharmacokinetics in chronic, daily cannabis smokers who received high-dose oral THC pharmacotherapy and later a smoked cannabis challenge.
Methods: Eleven daily cannabis smokers received 0, 30, 60, or 120 mg/d THC for four 5-day medication sessions, each separated by 9 days of ad libitum cannabis smoking. On the fifth day, participants were challenged with smoking one 5.9% THC cigarette. Plasma collected on the first and fifth days was quantified by two-dimensional gas chromatography mass spectrometer for THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH). Linear ranges (ng/mL) were 0.5-100 for THC, 1-50 for 11-OH-THC, and 0.5-200 for THCCOOH.
Results: During placebo dosing, THC, 11-OH-THC, and THCCOOH concentrations consistently decreased, whereas all cannabinoids increased dose dependently during active dronabinol administration. THC increase over time was not significant after any dose, 11-OH-THC increased significantly during the 60- and 120-mg/d doses, and THCCOOH increased significantly only during the 120-mg/d dose. THC, 11-OH-THC, and THCCOOH concentrations peaked within 0.25 hours after cannabis smoking, except after 120 mg/d THC when THCCOOH peaked 0.5 hours before smoking.
Conclusions: The significant withdrawal effects noted during placebo dronabinol administration were supported by significant plasma THC and 11-OH-THC concentration decreases. During active dronabinol dosing, significant dose-dependent increases in THC and 11-OH-THC concentrations support withdrawal symptom suppression. THC concentrations after cannabis smoking were only distinguishable from oral THC doses for 1 hour, too short a period to feasibly identify cannabis relapse. THCCOOH/THC ratios were higher 14 hours after overnight oral dronabinol abstinence but cannot distinguish oral THC dosing from the smoked cannabis intake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955404 | PMC |
http://dx.doi.org/10.1097/FTD.0b013e3182a5c446 | DOI Listing |
Clin Transl Sci
January 2025
Department of Chemistry, York College, City University of New York, New York, USA.
The two most extensively studied cannabinoids, cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), are used for myriad conditions. THC is predominantly eliminated via the cytochromes P450 (CYPs), whereas CBD is eliminated through both CYPs and UDP-glucuronosyltransferases (UGTs). The fractional contributions of these enzymes to cannabinoid metabolism have shown conflicting results among studies.
View Article and Find Full Text PDFJ Anal Toxicol
December 2024
Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria.
Ongoing legalization of cannabis for recreational use contributes to increasing numbers not only of incidents of driving under the influence, but within all forensic fields. In addition, newly emerging cannabinoids such as hexahydrocannabinol (HHC) and the increasing use of cannabidiol (CBD) products have to be addressed. The aims of this study were first to extend laboratory analysis capacity for the "established" cannabinoid ∆9-tetrahydrocannabinol (THC) and its metabolites 11-OH-THC and THC-COOH in human plasma/blood, and second to develop analytical procedures concerning HHC and CBD.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2025
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Background: Analysis of the phytocannabinoids holds significant importance because of their various pharmacological properties and potential therapeutic applications. Tandem mass spectrometry (MS/MS) coupled with electrospray ionization in positive ion mode is employed in this study to describe the collision-induced dissociation (CID) behavior of a series of common phytocannabinoids with the aim of establishing a generalized MS/MS fingerprint.
Materials And Methods: Eight phytocannabinoids, namely, ∆-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), tetrahydrocannabivarin (THCV), 11-hydroxy-Δ-tetrahydrocannabinol (11-OH-THC), 6-hydroxy-cannabidiol (6-OH-CBD), and 7-hydroxy-cannabidiol (7-OH-CBD), were studied.
Cannabis Cannabinoid Res
December 2024
Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA.
Few studies have directly compared the bioavailability of different cannabinoid formulations. Our goal was to assess the pharmacokinetic parameters and relative bioavailability of two Δ9-tetrahydrocannabinol:cannabidiol (THC:CBD) formulations: orally administered THC:CBD extract and oromucosally administered nabiximols. This pilot crossover study counterbalanced (1) 1 mL of orally administered THC:CBD extract (10 mg/mL each of THC and CBD in grapeseed oil) and (2) oromucosally administered nabiximols (four sprays of 2.
View Article and Find Full Text PDFPLoS One
December 2024
Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!