Time-resolved resonance Raman spectroscopy was used to investigate intersubunit communication of hemoglobin using hybrid hemoglobin in which nickel was substituted for the heme iron in the β subunits. Changes in the resonance Raman spectra of the α heme and the β Ni-heme groups in the hybrid hemoglobin were observed upon CO photolysis in the α subunit using a probe pulse of 436 and 418 nm, respectively. Temporal evolution of the frequencies of the ν(Fe-His) and the γ7 band of α heme was similar to that of unsubstituted hemoglobin, suggesting that substitution with Ni-heme did not perturb the allosteric dynamics of the hemoglobin. In the β subunits, no structural change in the Ni-heme was observed until 1 μs. In the microsecond regime, temporal evolution of the frequencies of the ν(Ni-His) and the γ7 band of β Ni-heme was observed concomitant with an R → T quaternary change at about 20 μs. The changes in the ν(Fe-His) and ν(Ni-His) frequencies of the α and β subunits with the common time constant of ∼20 μs indicated that the proximal tension imposed on the bond between the heme and the proximal histidine strengthened upon the quaternary changes in both the α and the β subunits concertedly. This observation is consistent with the Perutz mechanism for allosteric control of oxygen binding in hemoglobin and, thus, is the first real-time observation of the mechanism. Protein dynamics and allostery based on the observed time-resolved spectra also are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp407735t | DOI Listing |
ACS Omega
December 2024
Tea Chemistry and Pharmacology Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Bairatisal, Siliguri, West Bengal 734013, India.
Chemical pesticide residues have negative consequences for human health and the environment. Prioritizing a detection method that is both reliable and efficient is essential. Our innovative research explored the application of biosensors based on carbon quantum dots (CQDs) derived from waste tea to detect commonly used pesticides in tea.
View Article and Find Full Text PDFACS Omega
December 2024
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Raman spectroscopy has been proven to be a fast, convenient, and nondestructive technique for advancing our understanding of biological systems. The Raman effect originates from the inelastic scattering of light which directly probe vibration/rotational states in biological molecules and materials. Despite numerous advantages over infrared spectroscopy and continuous technical as well as operational improvement in Raman spectroscopy, an advanced development of the device and more applications have become possible.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:
Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina. Electronic address:
Here, we show that the replacement of the distal residues Asp and/or Arg of the DyP peroxidases from Bacillus subtilis and Pseudomonas putida results in functional enzymes, albeit with spectroscopically perturbed active sites. All the enzymes can be activated either by the addition of exogenous HO or by in situ electrochemical generation of the reactive oxygen species (ROS) OH, O and HO. The latter method leads to broader and upshifted pH-activity profiles.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!