An improved planar amperometric nitric oxide (NO) sensor with enhanced selectivity over carbon monoxide (CO), which represents a volatile interfering species for NO sensors that has been largely overlooked until recently, is described. Formation of an oxide film on the inner platinum working electrode via anodic polarization using an inner alkaline electrolyte solution provides the basis for improved selectivity. Cyclic voltammetry reveals that formation of an oxidized Pt film inhibits adsorption of CO to the electrode surface, which is a necessary initial step in the electrocatalytic oxidation of CO on Pt. Previous NO gas sensors that employ internal electrolyte solutions have been assembled using acidic internal solutions that inhibit the formation of a dense platinum oxide film on the working electrode surface. It is demonstrated herein that increasing the internal electrolyte pH promotes oxidized platinum film formation, resulting in improved selectivity over CO. Selectivity coefficients (log KNO,j) for sensors assembled with internal solutions at various pH values range from -0.08 at pH 2.0 to -2.06 at pH 11.7, with average NO sensitivities of 1.24 nA/μM and a limit of detection (LOD) of <1 nM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832428PMC
http://dx.doi.org/10.1021/ac402633tDOI Listing

Publication Analysis

Top Keywords

amperometric nitric
8
nitric oxide
8
enhanced selectivity
8
selectivity carbon
8
carbon monoxide
8
platinum oxide
8
oxide film
8
working electrode
8
improved selectivity
8
electrode surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!