Autoregulation is a vital homeostatic mechanism that helps maintain constant delivery of oxygen to organs despite fluctuations in arteriolar pressure. Autoregulation of blood flow to elevations in pressure is largely mediated by the myogenic response of small arteries and arterioles which constrict in response to elevations in distending pressure. There is now general agreement that the myogenic response is an intrinsic property of vascular smooth muscle cells in the vessel wall that involves depolarization and calcium influx through L-type voltage-gated calcium channels (VGCC), calcium/ calmodulin-dependent phosphorylation of myosin light chain kinase and actin myosin-based contraction. Despite intensive investigation, however, the mechanotransduction events that initiate the myogenic response and the signaling pathways involved remain uncertain. This special issue on the Impact of Myogenic Tone in Health and Disease includes 9 papers that address current thought regarding the molecular mechanisms underlying myogenic control of vascular tone in the renal, cerebral and coronary circulations and the evidence that impairments in the myogenic response contribute to the development of vascular and end organ damage associated with hypertension, diabetes and aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419267 | PMC |
http://dx.doi.org/10.2174/15701611113116660157 | DOI Listing |
Eur J Appl Physiol
January 2025
Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFEar Hear
December 2024
Department of Communication Sciences and Disorders, James Madison University, Harrisonburg, Virginia, USA.
Objectives: Cervical vestibular evoked myogenic potentials (cVEMPs) reflect saccular stimulation that results in an inhibitory muscle reflex recorded over the sternocleidomastoid muscle. These responses are utilized to study basic vestibular functions and are also applied clinically. Traditionally, cVEMPs have utilized transient stimuli such as clicks and tonebursts to evoke onset responses.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!