The Technology of Measurement Feedback Systems.

Couple Family Psychol

Center for Evaluation and Program Improvement, Vanderbilt University.

Published: December 2012

Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779359PMC
http://dx.doi.org/10.1037/a0031022DOI Listing

Publication Analysis

Top Keywords

feedback systems
12
measurement feedback
8
mental health
8
technology
4
technology measurement
4
systems usual
4
usual care
4
care community
4
community optimal
4
optimal sufficient
4

Similar Publications

Research on the high precision hydraulic column stress monitoring method.

Sci Rep

January 2025

Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.

The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.

View Article and Find Full Text PDF

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Point-of-care ultrasound (POCUS) has emerged as a standard of care across a variety of healthcare settings due to its ability to provide critical clinical information and as well as procedural guidance to clinicians directly at the bedside. Implementation of enterprise imaging (EI) strategies is needed such that POCUS images can be appropriately captured, indexed, managed, stored, distributed, viewed, and analyzed. Because of its unique workflow and educational requirements, reliance on traditional order-based workflow solutions may be insufficient.

View Article and Find Full Text PDF

Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning.

Nat Commun

January 2025

Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!