Individuals who do well in mathematics and science also often have good spatial skills. However, the predictive direction of links between spatial abilities and mathematical learning has not been firmly established, especially for young children. In the present research, we addressed this issue using a sample from a longitudinal data set that spanned 4 years and which includes measures of mathematical performance and various cognitive skills, including spatial ability. Children were tested once in each of 4 years (Time 1, 2, 3, and 4). At Time 3 and 4, 101 children (in Grades 2, 3, or 4 at Time 3) completed mathematical measures including (a) a number line task (0-1000), (b) arithmetic, and (c) number system knowledge. Measures of spatial ability were collected at Time 1, 2, or 3. As expected, spatial ability was correlated with all of the mathematical measures at Time 3 and 4, and predicted growth in number line performance from Time 3 to Time 4. However, spatial ability did not predict growth in either arithmetic or in number system knowledge. Path analyses were used to test whether number line performance at Time 3 was predictive of arithmetic and number system knowledge at Time 4 or whether the reverse patterns were dominant. Contrary to the prediction that the number line is an important causal construct that facilitates learning arithmetic, no evidence was found that number line performance predicted growth in calculation more than calculation predicted number line growth. However, number system knowledge at Time 3 was predictive of number line performance at Time 4, independently of spatial ability. These results provide useful information about which aspects of growth in mathematical performance are (and are not) related to spatial ability and clarify the relations between number line performance and measures of arithmetic and number system knowledge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776572PMC
http://dx.doi.org/10.3389/fpsyg.2013.00641DOI Listing

Publication Analysis

Top Keywords

spatial ability
24
number system
20
system knowledge
20
number performance
20
arithmetic number
16
number
14
performance time
12
time
11
spatial
8
mathematical performance
8

Similar Publications

This chapter reviews notions about the lateralization of numbers and calculation in the brain, including its developmental pattern. Such notions have changed dramatically in recent decades. What was once considered a function almost exclusively located in the left hemisphere has been found to be sustained by complex brain networks encompassing both hemispheres.

View Article and Find Full Text PDF

Working with scatterplots is a classic everyday task for data analysts, which gets increasingly complex the more plots are required to form an understanding of the underlying data. To help analysts retrieve relevant plots more quickly when they are needed, immersive virtual environments (iVEs) provide them with the option to freely arrange scatterplots in the 3D space around them. In this paper, we investigate the impact of different virtual environments on the users' ability to quickly find and retrieve individual scatterplots from a larger collection.

View Article and Find Full Text PDF

Background And Aims: Morphological differences between the two genetically close wild radishes, Raphanus raphanistrum and R. pugioniformis, include differences in fruit structure that influence their dispersal ability and within population spatial structure. Here, we tested within- and among-populations genetic variation, hypothesizing that (i) short-distance dispersal of heavy fruits in R.

View Article and Find Full Text PDF

High-Throughput Proteoform Imaging for Revealing Spatial-Resolved Changes in Brain Tissues Associated with Alzheimer's Disease.

Adv Sci (Weinh)

March 2025

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

Spatially resolved characterization of proteoforms has substantial potential to significantly advance the understanding of physiological and disease mechanisms. However, challenges remain regarding throughput and coverage. A robust method is developed for high-throughput proteoform imaging (HTPi) by combining matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) and region-specific top-down proteomic analysis.

View Article and Find Full Text PDF

Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!