Objectives: Because of the complex process and the risk of errors associated with the glutaraldehyde-based solutions previously used at our institution for disinfection, our department has implemented a new method for high-level disinfection of vaginal ultrasound probes: the hydrogen peroxide-based Trophon system (Nanosonics, Alexandria, New South Wales, Australia). The aim of this study was to compare the time difference, safety, and sonographers' satisfaction between the glutaraldehyde-based Cidex (CIVCO Medical Solutions, Kalona, IA) and the hydrogen peroxide-based Trophon disinfection systems.

Methods: The Institutional Review Board approved a 14-question survey administered to the 13 sonographers in our department. Survey questions addressed a variety of aspects of the disinfection processes with graded responses over a standardized 5-point scale. A process diagram was developed for each disinfection method with segmental timing analysis, and a cost analysis was performed.

Results: Nonvariegated analysis of the survey data with the Wilcoxon signed rank test showed a statistical difference in survey responses in favor of the hydrogen peroxide-based system over the glutaraldehyde-based system regarding efficiency (P = .0013), ease of use (P = .0013), ability to maintain work flow (P = .026), safety (P = .0026), fixing problems (P = .0158), time (P = .0011), and overall satisfaction (P = .0018). The glutaraldehyde-based system took 32 minutes versus 14 minutes for the hydrogen peroxide-based system; the hydrogen peroxide-based system saved on average 7.5 hours per week. The cost of the hydrogen peroxide-based system and weekly maintenance pays for itself if 1.5 more ultrasound examinations are performed each week.

Conclusions: The hydrogen peroxide-based disinfection system was proven to be more efficient and viewed to be easier and safer to use than the glutaraldehyde-based system. The adoption of the hydrogen peroxide-based system led to higher satisfaction among sonographers.

Download full-text PDF

Source
http://dx.doi.org/10.7863/ultra.32.10.1799DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide-based
36
peroxide-based system
24
glutaraldehyde-based system
12
system
11
peroxide-based
9
high-level disinfection
8
disinfection vaginal
8
vaginal ultrasound
8
ultrasound probes
8
hydrogen
8

Similar Publications

This in vitro study evaluated the effects of brushing with activated charcoal powder or toothpaste on enamel surface properties, including color change (ΔE), Knoop microhardness (HK), roughness (Ra), and the characteristics of the resulting brushing slurry [pH, fluoride (F), and calcium (Ca) concentration]. A total of 48 enamel samples were stained and divided into 4 groups ( = 12): activated charcoal toothpaste (AC-T), activated charcoal powder (AC-P), hydrogen peroxide-based whitening toothpaste (HP-T), and conventional toothpaste (C-T, positive control). The samples were subjected to a brushing cycling model, and ΔE, HK, Ra and enamel morphology were analyzed at baseline (T0) and after brushing cycle (T1).

View Article and Find Full Text PDF

Disinfectant application to gloved hands before handling SPF mice is standard practice to minimize transmission of pathogens and microbial contamination between cages. The risk of contamination with murine pathogens on gloves as well as the efficacy of disinfectant application for this step is largely unknown. This study aimed to determine if murine norovirus (MNV), Helicobacter spp.

View Article and Find Full Text PDF

In this work, we have investigated the thermal features of hydrogen peroxide-based energetic materials formulations. Initial research has shown that both the auxiliary oxidiser (sodium nitrate, potassium nitrate or calcium nitrate) and sensitising agent (glass microspheres) have significant influence on the rate of hydrogen peroxide decay in such formulations. In terms of the thermal features of the tested energetic materials, a similar and significant influence of the auxiliary oxidising agent and sensitising agent choice was observed.

View Article and Find Full Text PDF

GSH-Depleting and HO Self-Supplying Calcium Peroxide-Based Nanoplatforms for Efficient Bacterial Eradication via Photothermal-Enhanced Chemodynamic Therapy.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China.

Article Synopsis
  • To overcome these challenges, researchers created a multifunctional nanoplatform (CSPC) that generates hydrogen peroxide, depletes glutathione, and has photothermal properties, enhancing CDT.
  • The CSPC nanomaterials showed strong antibacterial effects, completely eradicating bacteria and significantly improving wound healing when tested under near-infrared light.
View Article and Find Full Text PDF
Article Synopsis
  • A new colorimetric sensing method using exfoliated g-CN nanosheets (E-g-CN NSs) is introduced, which shows rapid and accurate detection capabilities.
  • This sensor can oxidize a colorless compound (TMB) into a dark blue product when mixed with hydrogen peroxide, enabling sensitive measurements with a detection limit of 0.15 nM.
  • It demonstrates excellent stability and selectivity over 10 weeks, making it a promising tool for real-world applications in environmental and health monitoring.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!