We previously demonstrated that 14-3-3β is overexpressed in astrocytomas; however, the underlying mechanisms are poorly understood. Based on the reported multiple functions of 14-3-3β, we hypothesized that it interacts with glycogen synthase kinase 3 β (GSK3β), which regulates β-catenin-mediated oncogene expression and contributes to tumorigenesis and astrocytoma progression. To test these hypotheses, we used 14-3-3β overexpression vectors and small interfering RNA (siRNA) transfection in the human normal astrocyte cell line SVGp12 and the glioma cell line U87, respectively. The results showed that overexpression of 14-3-3β promoted the proliferation of SVGp12 cells, while knockdown of 14-3-3β inhibited the proliferation of U87 cells as analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. In Flag-tagged 14-3-3β-overexpressing cells, GSK3β was co-immunoprecipitated with 14-3-3β using a Flag antibody. Knockdown of β-catenin by siRNA blocked cell proliferation induced by overexpression of 14-3-3β. Furthermore, overexpression of 14-3-3β suppressed the phosphorylation of β-catenin leading to its accumulation and nuclear translocation as revealed by western blot analysis. In addition, β-catenin nuclear translocation induced by overexpression of 14-3-3β activated the transcription of oncogenes including c-myc and cyclin D1. Collectively, these results revealed that 14-3-3β regulates the proliferation of astrocytes and glioma cells through the GSK3β/β-catenin signaling pathway. The delineated mechanism of 14-3-3β may be responsible for the tumorigenesis and progression of human astrocytomas. Thus, new therapeutic strategies or drugs aimed at 14-3-3β may have potential for the treatment of human astrocytomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2013.2740 | DOI Listing |
Kaohsiung J Med Sci
January 2025
Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!