Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depends on the activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000046PMC
http://dx.doi.org/10.1126/scisignal.2004014DOI Listing

Publication Analysis

Top Keywords

cdk4 igf1r
12
cell viability
12
dedifferentiated liposarcoma
8
igf1r synergistic
8
synergistic drug
8
drug targets
8
growth factor
8
factor receptor
8
receptor igf1r
8
network models
8

Similar Publications

Immunoexpression of HER2 pathway related markers in HER2 invasive breast carcinomas treated with trastuzumab.

Pathol Res Pract

December 2023

Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil.

Purpose: We evaluated the immunoexpression of potential markers involved in the HER2 pathway in invasive breast carcinoma with HER2 amplification treated with trastuzumab.

Methods: Samples of ninety patients diagnosed and treated at two public Brazilian hospitals with overexpressed invasive carcinoma between 2009 and 2018 were included. Several markers (Bcl-2, CDK4, cyclin D1, EGFR, IGF1, IGF-1R, MDM2, MUC4, p16, p21, p27, p53, PTEN, RA, TNFα, and VEGF) were immune analyzed in the tumor by immunohistochemistry and then correlated with clinicopathological variables.

View Article and Find Full Text PDF

Background: Ewing sarcoma (EWS) is an aggressive sarcoma with few treatment options for patients with relapsed disease. Cyclin-dependent kinase 4 (CDK4) is a genomic vulnerability in EWS that is synergistic with IGF-1R inhibition in preclinical studies. We present the results of a phase 2 study combining palbociclib (CDK4/6 inhibitor) with ganitumab (IGF-1R monoclonal antibody) for patients with relapsed EWS.

View Article and Find Full Text PDF

Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer.

Biology (Basel)

May 2023

The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.

Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies.

View Article and Find Full Text PDF

Ewing sarcoma is the second most prevalent paediatric malignant bone tumour. In most cases, it is driven by the fusion oncoprotein EWS::FLI1, which acts as an aberrant transcription factor and dysregulates gene expression. EWS::FLI1 and a large number of downstream dysregulated proteins are Hsp90 client proteins, making Hsp90 an attractive target for the treatment of Ewing sarcoma.

View Article and Find Full Text PDF

As a key regulator of gene transcription and post-transcriptional modification, miRNAs play a wide range of roles in skeletal muscle development. Skeletal muscle satellite cells contribute to postnatal growing muscle fibers. Thus, the goal of this study was to explore the effects of novel miRNA Y-56 on porcine skeletal muscle satellite cells (PSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!