Deregulation of voltage-gated potassium channel subunit Kv1.3 has been reported in many tumors. Kv1.3 promotes tumorigenesis by enhancing cell proliferation while suppressing apoptosis. However, the expression and function of Kv1.3 in osteosarcoma are unknown. In the present study, we detected the expression of Kv1.3 in human osteosarcoma cells and tissues by RT-PCR, Western blot and immunohistochemistry. We further examined cell proliferation and apoptosis in osteosarcoma MG-63 cells and xenografts following knockdown of Kv1.3 by short hairpin RNA (shRNA). We found that Kv1.3 was upregulated in human osteosarcoma. Knockdown of Kv1.3 significantly suppressed cell proliferation and increased apoptosis as demonstrated by enhanced cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of Caspase-3/7. Furthermore, adenovirus delivered shRNA targeting Kv1.3 significantly inhibited the growth of MG-63 xenografts. Taken together, our results suggest that Kv1.3 is a novel molecular target for osterosarcoma therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794831 | PMC |
http://dx.doi.org/10.3390/ijms140919245 | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Orthopedics, Nanchang 330006, China.
Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.
Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.
Biomed Pharmacother
December 2024
School of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
FASEB J
December 2024
Antibody and Vaccine Group, Faculty of Medicine, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Southampton, UK.
Osteosarcoma is the most common primary bone cancer, occurring frequently in children and young adults. Patients are treated with surgery and multi-agent chemotherapy, and despite the introduction of mifamurtide in 2011, there has been little improvement in survival for decades. 3-dimensional models offer the potential to understand the complexity of the osteosarcoma tumor microenvironment and aid in developing new treatment approaches.
View Article and Find Full Text PDFCureus
November 2024
Plastic and Reconstructive Surgery, National Cancer Center Hospital East, Chiba, JPN.
Purpose Adjuvant chemotherapy (AC) following limb-sparing surgery with endoprosthesis is the gold standard treatment for osteosarcoma (OS). However, AC can impair wound healing, leading to endoprosthesis exposure, making the decision to continue or pause AC important. We propose standard guidelines for managing this situation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!