The main objectives of this study were (a) to evaluate the in vitro performance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study the in vivo pharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. The in vivo assays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766998 | PMC |
http://dx.doi.org/10.1155/2013/920305 | DOI Listing |
Pharm Nanotechnol
December 2024
M.M. College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana- 133203, Ambala, India.
Background: Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Bialystok, Poland. Electronic address:
In this study, lyophilizates with the second-class antipsychotic agent lurasidone hydrochloride were developed as orodispersible platforms to improve patients' adherence. The primary aim was to evaluate the effect of the amino acid additive (L-arginine, L-lysine, L-histidine) and the freeze-drying stage on the pharmaceutical performance of the designed formulations. The composition was initially optimized using an experimental design approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun 130024, China.
Liposomes have attracted attention in biomedicine and pharmacy for their benefits including reduced toxicity, extended pharmacokinetics, and biocompatibility. However, their limitations include susceptibility to blood clearance, rapid disintegration, and lack of functionality, restricting their further applications. To address these challenges, inspired by the unique topological features of cyclic polymers and the specific binding property of the choline phosphate (CP) lipid, dipole-dipole interactions between CP molecules are utilized to create a detachable cyclic PEG-embedded CP liposome (d-cycPEG-lipo).
View Article and Find Full Text PDFJ Control Release
December 2024
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:
Therapeutic challenges of chronic pulmonary infections caused by multidrug-resistant Pseudomonas aeruginosa (MDRP. aeruginosa) biofilms due to significantly enhanced antibiotic resistance. This resistance is driven by reduced outer membrane permeability, biofilm barriers, and excessive secretion of virulence factors.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:
Hydrogels in agriculture offer controlled release, however, face issues with rapid disintegration, swift release, and inability to protect active ingredients. To overcome this, the study presents a hydrogel delivery system that uses dopamine-functionalized nanoporous diatom (DE-PDA) microparticles entrapped in alginate and chitosan matrices to deliver plant growth hormone, gibberellic acid (GA) that suffers from instability, limiting its field application. Developed GA@hydrogel beads exhibited an encapsulation efficiency of 85.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!