Renal function and blood pressure (BP) exhibit a circadian pattern of variation, but the molecular mechanism underlying this circadian regulation is not fully understood. We have previously shown that the circadian clock protein Per1 positively regulates the basal and aldosterone-mediated expression of the alpha subunit of the renal epithelial sodium channel (αENaC). The mechanism of this regulation has not been determined however. To further elucidate the mechanism of mineralocorticoid receptor (MR) and Per1 action, site-directed mutagenesis, DNA pull-down assays and chromatin immunoprecipitation (ChIP) methods were used to investigate the coordinate regulation of αENaC by Per1 and MR. Mutation of two circadian response E-boxes in the human αENaC promoter abolished both basal and aldosterone-mediated promoter activity. DNA pull down assays demonstrated the interaction of both MR and Per1 with the E-boxes from the αENaC promoter. These observations were corroborated by ChIP experiments showing increased occupancy of MR and Per1 on an E-box of the αENaC promoter in the presence of aldosterone. This is the first report of an aldosterone-mediated increase in Per1 on a target gene promoter. Taken together, these results demonstrate the novel finding that Per1 and MR mediate the aldosterone response of αENaC through DNA/protein interaction in renal collecting duct cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775537PMC
http://dx.doi.org/10.3389/fphys.2013.00253DOI Listing

Publication Analysis

Top Keywords

αenac promoter
12
mineralocorticoid receptor
8
coordinate regulation
8
regulation αenac
8
collecting duct
8
duct cells
8
basal aldosterone-mediated
8
αenac
7
per1
7
promoter
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!