Cell and tissue polarity are tightly coupled and are vital for normal tissue homeostasis. Changes in cellular and tissue organization are common to even early stages of disease, particularly cancer. The digestive tract is the site of the second most common cause of cancer deaths in the developed world. Tumours in this tissue arise in an epithelium that has a number of axes of cell and tissue polarity. Changes in cell and tissue polarity in response to genetic changes that are known to underpin disease progression provide clues about the link between molecular-, cellular- and tissue-based mechanisms that accompany cancer. Mutations in adenomatous polyposis coli (APC) are common to most colorectal cancers in humans and are sufficient to cause tumours in mouse intestine. Tissue organoids mimic many features of whole tissue and permit identifying changes at different times after inactivation of APC. Using gut organoids, we show that tissue polarity is lost very early during cancer progression, whereas cell polarity, at least apical-basal polarity, is maintained and changes only at later stages. These observations reflect the situation in tumours and validate tissue organoids as a useful system to investigate the relationship between cell polarity and tissue organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785964PMC
http://dx.doi.org/10.1098/rstb.2013.0014DOI Listing

Publication Analysis

Top Keywords

tissue polarity
20
cell tissue
16
tissue
12
tissue organization
12
polarity
8
tissue organoids
8
cell polarity
8
cell
6
changes
5
polarity intestinal
4

Similar Publications

Background: Loss of bipolar electrograms immediately after pulsed field ablation (PFA) makes lesion durability assessment challenging.

Objective: The aim of this trial (NCT06700226) was to evaluate a novel ablation system that can optically predict lesion durability by detecting structural changes in the tissue during ablation.

Methods: Patients with paroxysmal atrial fibrillation underwent pulmonary vein isolation (PVI) using PFA (AblaView®, MedLumics).

View Article and Find Full Text PDF

Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.

View Article and Find Full Text PDF

The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low M = 280 kDa and high M = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs.

View Article and Find Full Text PDF

Current understanding of the histology of the dermoskeleton of tetrapods comes from fossilized and recent remains of skulls, osteoderms, carapace, plastron and other postcranial material which were always investigated using linear cross polarized light (LCPL) microscopy. The pectoral girdle of vast majority of non-amniote tetrapods, including temnospondyls evolved large ventrally located dermal bones- the interclavicle and a pair of clavicles. Despite that, there is a lack of information about the bone tissue structure from these postcranial dermal bones.

View Article and Find Full Text PDF

The bidirectional relationship between cilia and PCP signaling pathway core protein Vangl2.

Sci Prog

January 2025

Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, China.

Vangl2, a core component of the PCP signaling pathway, serves as a scaffold protein on the cell membrane, playing a crucial role in organizing protein complexes. Cilia, dynamic structures on the cell surface, carry out a wide range of functions. Research has highlighted a bidirectional regulatory interaction between Vangl2 and cilia, underscoring their interconnected roles in cellular processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!