Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme-support interaction. The highest immobilization efficiency (100 %) and retention activity (60 %) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepabeads support in 100 mM Tris-HCl buffer, pH 8, containing 3 M KCl at 5 °C. No significant stabilization was observed after blocking the unreacted epoxy groups with commonly used hydrophilic agents. A significant increase in the stability of the immobilized enzyme was achieved by blocking the unreacted epoxy groups with ethylamine. The immobilization process increased the enzyme stability, thermal activity, and organic solvents tolerance when compared to its soluble counterpart, indicating that the immobilization enhances the structural and conformational stability. One step purification-immobilization of this enzyme has been carried out on metal chelate-epoxy Sepabeads, as an efficient method to obtain immobilized biocatalyst directly from bacterial extracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-013-9701-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!