Currently, autologous bone marrow-derived stem cell is one of the most innovative areas of stem cells research. Previous studies on animal models of nervous system diseases have shown that these cells have a good effect on nervous system disorders. The alternative treatment with stem cells for the nervous system diseases has also gradually reached to clinical application stage. The prospect is captivating, but the safety and efficacy of this procedure need further research. To observe the clinical efficacy and side effects of the treatment for autologous mesenchymal stem cells and neural stem/progenitor cells which are in differentiated form by inducing with cerebrospinal fluid in the patients with nervous system diseases, thirty patients were selected from our hospital (2009-10 to 2012-07) and were followed at 1 month, 3 months, 6 months, 1 year and 2 years after the treatment with autologous mesenchymal stem cells and neural stem/progenitor cells in differentiated form was introduced. In this paper, we will introduce the process to make cells accessible for the clinical application by the description of the changes observed in 7 cases were followed for 2 years. The time for bone marrow mesenchymal stem cells could be available for clinical needs is as early as 5 days, not later than 10 days, and the median time is 8 days, while neural stem/progenitor cells in differentiated form can be available for clinical needs in as early as 12 days, not later than 15 days, and the median time is 13.5 days (statistical explanation: Case 5 only uses autologous mesenchymal stem cells, and Case 7 has two times bone marrow punctures). The neurological function of the patients was improved in 1-month follow-up, and the patients have a better discontinuous trend (statistical explanation: sometimes the neurological function of the patients between two adjacent follow-ups does not change significantly). After transplantation, four patients appeared to have transient fever, but it was easily controlled by symptomatic treatment. Seven patients did not appear to show secondary tumor induced by transplantation of stem cells in 2-year follow-up. Thus, it suggests that the use of autologous bone marrow-derived stem cells transplantation in patients with nervous system diseases is a feasible, convenient, safe, and effective method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-013-9756-8DOI Listing

Publication Analysis

Top Keywords

stem cells
36
nervous system
24
system diseases
20
mesenchymal stem
16
cells
14
autologous bone
12
bone marrow-derived
12
marrow-derived stem
12
transplantation patients
12
patients nervous
12

Similar Publications

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!