The structures, relative stability, infrared (IR) and Raman spectra of the most-stable forms of [H9O4]+ and [H13O6]+ ions in acetonitrile are computed using the B3LYP functional combined with the Polarizable Continuum Model approximation. These forms are hydrated [H3O]+ and [H5O2]+ cores. Of interest are two main environmental effects on the spectroscopic features of protonated water hydrates: (i) polarization of the solvent by the hydrate dipole moment; (ii) formation of H-bonds with bulky counterions (ClO4- and BF4-). The effect of the polarization on the structure of the [H3O]+ core strongly depends on the symmetry of the hydration shell. A distortion of a hydrated [H3O]+ easily changes its structure to the [H7O3]+ one that causes a change in the nature of the most IR-intensive bands. Thus, the specificity of this core can be easily lost that prevents identification of the corresponding species. By contrast, the [H5O2]+ core is more stable against distortion. It is characterized by the short O…O distance (< 2.45 Å), IR-intensive band near 1720 cm-1 and Raman-intensive line around 500 cm-1. The [H5O2]+ core remains identifiable even when protonated hydrate is involved in specific interactions with a bulky counterion. Geometrical criteria for identification of the [H3O]+, [H5O2]+ and [H7O3]+ cores are discussed.
Download full-text PDF |
Source |
---|
J Chem Theory Comput
June 2024
InterX, Inc. (a subsidiary of NeoTX Therapeutics, Ltd.), 805 Allston Way, Berkeley, California 94710, United States.
J Chem Theory Comput
September 2015
Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States.
Here, we demonstrate the application of fragment-based electronic structure calculations in (a) ab initio molecular dynamics (AIMD) and (b) reduced dimensional potential calculations, for medium- and large-sized protonated water clusters. The specific fragmentation algorithm used here is derived from ONIOM, but includes multiple, overlapping “model” systems. The interaction between the various overlapping model systems is (a) approximated by invoking the principle of inclusion-exclusion at the chosen higher level of theory and (b) within a real calculation performed at the chosen lower level of theory.
View Article and Find Full Text PDFThe structures, relative stability, infrared (IR) and Raman spectra of the most-stable forms of [H9O4]+ and [H13O6]+ ions in acetonitrile are computed using the B3LYP functional combined with the Polarizable Continuum Model approximation. These forms are hydrated [H3O]+ and [H5O2]+ cores. Of interest are two main environmental effects on the spectroscopic features of protonated water hydrates: (i) polarization of the solvent by the hydrate dipole moment; (ii) formation of H-bonds with bulky counterions (ClO4- and BF4-).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!