The so-called zeta potential can be determined through electrokinetic measurements and indicates the status regarding surface charges along the interface between solids and liquids. Surface charge gives us information about the condition, quality, and characteristics of a macroscopic surface in the polar medium. In our study the zeta potential was determined using a "SurPASS" electrokinetic analyzer based on the streaming current and streaming potential measurements. The aim of the research was to compare the results of two differently designed measuring cells ("Adjustable Gap Cell" and "Clamping Cell") but operating on the same principle. In order to investigate this problem, the zeta potential was determined for the three polymeric materials: poly(ethylene terephthalate) foil, thin-film polyamide composite membranes for nanofiltration and reverse osmosis. The results obtained with "Clamping Cell" versus "Adjustable Gap Cell" showed differences in zeta potential, where the "Adjustable Gap Cell" gave more reproducible results. One reason for this behaviour could be the different geometries of the streaming channels. A more likely reason is the design of the "Clamping Cell", that requires a sample size larger than necessary for zeta potential determination.

Download full-text PDF

Source

Publication Analysis

Top Keywords

zeta potential
24
potential determined
12
"adjustable gap
12
gap cell"
12
"clamping cell"
12
potential determination
8
polymeric materials
8
differently designed
8
designed measuring
8
measuring cells
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive development and disruption of neurocognitive function. This neuropathological condition is marked by neurodegeneration, loss of neural tissue, and the formation of neurofibrillary tangles and Aβ plaques. Various studies reported the utilization of phytoconstituents like fisetin, quercetin, berberine, and xanthohumol for the treatment of AD.

View Article and Find Full Text PDF

The current study aimed to improve the oral bioavailability of tenofovir (TNF), an antihuman immunodeficiency viral (HIV) drug, by integrating it into solid lipid nanoparticles (SLNs), an emerging lipid formulation. The suggested SLNs were generated utilizing the microemulsion process, using Compritol 888 ATO. A Box-Behnken experimental design was attempted to analyze the impact of critical quality attributes (CQAs), such as lipid and surfactant content and homogenization duration on response metrics such as particle size (PS) and percentage entrapment.

View Article and Find Full Text PDF

In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.

View Article and Find Full Text PDF

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!