Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There are limited photoluminescence (PL) studies for rare earth borates with crystalline water molecules, which are usually supposed to have low PL efficiency because the vibrations of H2O or -OH may lead to emission quenching. We investigated the PL properties of Sm(1-x)Eu(x)[B9O13(OH)4]·H2O (x = 0-1.00) and their dehydrated products α-Sm(1-x)Eu(x)B5O9. There is no quenching effect in those studied polyborates because the large borate ionic groups isolate the Eu(3+) activators very well. Sm(3+) and Eu(3+) are basically separated luminescent activators. Comparatively, Sm(3+) shows a very small emission intensity, which can be almost ignored, therefore our interest is focused on the Eu(3+) luminescence. By TG-DSC and powder XRD experiments, we defined three weight-loss steps for Eu[B9O13(OH)4]·H2O and a re-crystallization process to α-EuB5O9, during which luminescent spectra of Eu(3+) are recorded. It shows an interesting variety and therefore is a good medium to understand the coordination environment evolution of Eu(3+), even for the intermediate amorphous phase. In fact, the coordination symmetry of Eu(3+) in the amorphous state is the lowest. The high efficiency of the f-f transitions and large R/O value (3.8) imply this amorphous phase is potentially a good red-emitting UV-LED phosphor. Anhydrous α-EuB5O9 shows the highest luminescent efficiency excited by Eu(3+) CT transition. In addition, α-Sm(1-x)Eu(x)B5O9 was synthesized by a sol-gel method directly for the first time, and α-EuB5O9 shows superior PL properties due to its better crystallinity. A lot of hydrated polyborates with crystalline water molecules remain unexplored and our study shows their potential as good phosphors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt51875b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!