Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5 × 10(8) CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-5199-9 | DOI Listing |
Bioresour Technol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.
View Article and Find Full Text PDFLipophilicity and blood partitioning are important determinants for predicting toxicokinetics using physiologically-based toxicokinetic (PBTK) modeling. In this study, the logarithm of the -octanol:water partition coefficient (log) and the blood-to-plasma concentration ratio ( ) were for the first time experimentally determined for the pyrrolizidine alkaloids (PAs) intermedine, lasiocarpine, monocrotaline, retrorsine and their -oxides (PANOs). Validated assays for log (miniaturized shake-flask method) and (LC-MS/MS-based depletion assay) determination were compared to an ensemble of models.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Xianghu Laboratory, Hangzhou, 310027, China.
Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.
View Article and Find Full Text PDFCurr Res Microb Sci
December 2024
Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun 248005, Uttarakhand, India.
The challenges of pollution and agro-industrial waste management have led to the development of bioconversion techniques to transform these wastes into valuable products. This has increased the focus on the sustainable and cost-efficient production of biosurfactants from agro-industrial waste. Hence, the present study investigates the production of sophorolipid biosurfactants using the yeast strain IIPL32 under submerged fermentation, employing sugarcane bagasse hydrolysate-a renewable, low-cost agro-industrial waste as the feedstock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!