We have demonstrated that C60 derivatives bearing a pyrrolidine moiety as well as a variety of other substituents can form 1 : 2 complexes with γ-cyclodextrin (γ-CDx) using a mechanochemical high-speed vibration milling apparatus. When the influence of the steric hindrance of the substituents on the formation of the complexes was negligible, the water-solubilities of the complexes were shown experimentally to be completely dependent on the hydrophobic properties of the substituent. Furthermore, the stabilities of the γ-CDx-complexes of several different C60 derivatives were found to be similar to or slightly higher than that of the C60·γ-CDx complex, with the solubilities of the complexes showing no correlation to the stabilities. Based on the results of a series of theoretical investigations, we have shown that the stabilities of the γ-CDx-complexes can be affected not only by steric effects but also by the polarities of the substituent groups, which exist in the vicinity of the upper rim of γ-CDx, because the water bound to the polar group can assist in the stabilisation of the complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob41513aDOI Listing

Publication Analysis

Top Keywords

c60 derivatives
8
stabilities γ-cdx-complexes
8
complexes
6
substituents water-solubility
4
water-solubility stability
4
stability properties
4
properties [60]fullerene
4
[60]fullerene derivative·gamma-cyclodextrin
4
derivative·gamma-cyclodextrin complexes
4
complexes demonstrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!