2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the WWTPs is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal WWTPs with and without treatment of indirect industrial dischargers and from industrial WWTPs with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 μg/L), and in effluents of WWTPs (up to 310 μg/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 μg/L) compared to wastewater from factories not processing recycled paper (0.066 μg/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 μg/L) were also detected in wastewater from a printing ink factory and a paint factory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2013.08.046 | DOI Listing |
Small Methods
March 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW).
View Article and Find Full Text PDFFoods
March 2025
Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
This study aimed to optimize the three-dimensional (3D) printing parameters for surimi-based inks and investigate the effects of additives (starch, salt, and water) on the rheological and textural properties of surimi paste, aiming to develop a universal formulation applicable across three fish species: Alaska pollock, golden threadfin bream, and hairtail. By analyzing the hardness, adhesiveness, storage modulus (G'), and complex viscosity of the surimi inks, a formula was developed to identify the range of physical properties required for stable and precise 3D printing. The parameter windows to build a 3D structure with a 45° slope were as follows: hardness, 150-415 g/cm, and adhesion, -300 to -115 g.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Équipe de Recherche sur les Processus Innovatifs (ERPI), Université de Lorraine, F-54000 Nancy, France.
The deposition status and profile dimension of deposited filaments have an impact on the quality of the printed parts fabricated by direct ink writing (DIW). Previous works often failed to realize the full quantitative characterizations of the detailed influence of the process parameters on the deposition status and profile dimension. Herein, we predict and analyze the deposition status and profile dimension by proposing an improved three-dimensional (3D) numerical model.
View Article and Find Full Text PDFFood Chem
March 2025
College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China. Electronic address:
High internal phase Pickering emulsions (HIPPEs) hold broad application prospects in the modern food industry. This study developed a novel strategy for extracting starch from a non-conventional source (millet) followed by chemical modification to construct a ternary octenyl succinate millet starch/chitosan hydrochloride-epigallocatechin gallate (OMS/CHC-EGCG) complex to stabilize HIPPEs. The OMS/CHC-EGCG complex was assembled through electrostatic, hydrophobic, and hydrogen bonding interactions among OMS, CHC, and EGCG.
View Article and Find Full Text PDFThe COVID-19 pandemic highlights the global threat posed by emerging viruses, emphasizing the critical need for effective strategies to combat pathogen transmission. Moreover, alongside emerging viruses, the increasing threat of antimicrobial resistance further reinforces the need to develop novel methods for infection control. Anti-pathogenic coatings on textiles offer a promising solution; in this study, three electroless copper-plated fabrics are evaluated for their antipathogenic properties following International Standards Organisation (ISO) standards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!