Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors.

J Physiol

Q. Fu: UT Southwestern Medical Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX 75231, USA.

Published: December 2013

Cardiovascular risk remains high in patients with hypertension even with adequate blood pressure (BP) control. One possible mechanism may be sympathetic activation via the baroreflex. We tested the hypothesis that chronic inhibition of renin reduces BP without sympathetic activation, but diuresis augments sympathetic activity in elderly hypertensives. Fourteen patients with stage-I hypertension (66 ± 5 (SD) years) were treated with a direct renin inhibitor, aliskiren (n = 7), or a diuretic, hydrochlorothiazide (n = 7), for 6 months. Muscle sympathetic nerve activity (MSNA), BP, direct renin and aldosterone were measured during supine and a graded head-up tilt (HUT; 5 min 30° and 20 min 60°), before and after treatment. Sympathetic baroreflex sensitivity (BRS) was assessed. Both groups had similar BP reductions after treatment (all P < 0.01), while MSNA responses were different between hydrochlorothiazide and aliskiren (P = 0.006 pre/post × drug). Both supine and upright MSNA became greater after hydrochlorothiazide treatment (supine, 72 ± 18 post vs. 64 ± 15 bursts (100 beats)(-1) pre; 60° HUT, 83 ± 10 vs. 78 ± 13 bursts (100 beats)(-1); P = 0.002). After aliskiren treatment, supine MSNA remained unchanged (69 ± 13 vs. 64 ± 8 bursts (100 beats)(-1)), but upright MSNA was lower (74 ± 15 vs. 85 ± 10 bursts (100 beats)(-1); P = 0.012 for pre/post × posture). Direct renin was greater after both treatments (both P < 0.05), while upright aldosterone was greater after hydrochlorothiazide only (P = 0.002). The change in upright MSNA by the treatment was correlated with the change of aldosterone (r = 0.74, P = 0.002). Upright sympathetic BRS remained unchanged after either treatment. Thus, chronic renin inhibition may reduce upright MSNA through suppressed renin activity, while diuresis may evoke sympathetic activation via the upregulated renin-angiotensin-aldosterone system, without changing intrinsic sympathetic baroreflex function in elderly hypertensive patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872761PMC
http://dx.doi.org/10.1113/jphysiol.2013.261362DOI Listing

Publication Analysis

Top Keywords

upright msna
16
bursts 100
16
100 beats-1
16
sympathetic activation
12
direct renin
12
sympathetic
9
chronic renin
8
renin inhibition
8
blood pressure
8
muscle sympathetic
8

Similar Publications

Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g.

View Article and Find Full Text PDF

This article explains the comprehensive state of the art assessment of sympathetic (SNA) and vagal nerve activity recordings in humans and highlights the precise mechanisms mediating increased SNA and its corresponding presumed clinical determinants and therapeutic potential in the context of chronic obstructive pulmonary disease (COPD). It is known that patients with COPD exhibit increased muscle sympathetic nerve activity (MSNA), as measured directly using intraneural microelectrodes-the gold standard for evaluation of sympathetic outflow. However, the underlying physiological mechanisms responsible for the sympathoexcitation in COPD and its clinical relevance are less well understood.

View Article and Find Full Text PDF

Previous studies have demonstrated that sympathetic baroreflex sensitivity (BRS) increases during orthostatic stress in humans. We recently showed that dietary salt intake affects sympathetic neural control in healthy premenopausal women. This study aimed to determine whether salt loading versus salt reduction would impact sympathetic BRS during orthostasis in premenopausal women with a history of normal pregnancy.

View Article and Find Full Text PDF

Key Points: The arterial baroreflex's operating point pressure is reset upwards and rightwards from rest in direct relation to the increases in dynamic exercise intensity. The intraneural pathways and signalling mechanisms that lead to upwards and rightwards resetting of the operating point pressure, and hence the increases in central sympathetic outflow during exercise, remain to be identified. We tested the hypothesis that the central production of angiotensin II during dynamic exercise mediates the increases in sympathetic outflow and, therefore, the arterial baroreflex operating point pressure resetting during acute and prolonged dynamic exercise.

View Article and Find Full Text PDF

Background: Whether renal denervation (RDN) in patients with resistant hypertension normalizes blood pressure (BP) regulation in response to routine cardiovascular stimuli such as upright posture is unknown. We conducted an integrative study of BP regulation in patients with resistant hypertension who had received RDN to characterize autonomic circulatory control.

Methods: Twelve patients (60 ± 9 [SD] years, n = 10 males) who participated in the Symplicity HTN-3 trial were studied and compared to 2 age-matched normotensive (Norm) and hypertensive (unmedicated, HTN) control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!