Ageing and diabetes share a common deleterious phenomenon, the formation of Advanced Glycation Endproducts (AGEs), which accumulate predominantly in collagen due to its low turnover. Though the general picture of glycation has been identified, the detailed knowledge of which collagen amino acids are involved in AGEs is still missing. In this work we use an atomistic model of a collagen fibril to pinpoint, for the first time, the precise location of amino acids involved in the most relevant AGE, glucosepane. The results show that there are 14 specific lysine-arginine pairs that, due to their relative position and configuration, are likely to form glucosepane. We find that several residues involved in AGE crosslinks are within key collagen domains, such as binding sites for integrins, proteoglycans and collagenase, hence providing molecular-level explanations of previous experimental results showing decreased collagen affinity for key molecules. Altogether, these findings reveal the molecular mechanism by which glycation affects the biological properties of collagen tissues, which in turn contribute to age- and diabetes-related pathological states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.matbio.2013.09.004 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Pain Management, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, Shandong 250012, China. Electronic address:
This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:
The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.
View Article and Find Full Text PDFJ Virol
January 2025
SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.
The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!