Background: Genetic factors account for about fifty percent of the risk for alcoholism and alcohol dependence (AD) has been reported to be influenced by cannabinoid receptors (CBRs) and the endocannabinoid system (ECS). Previous studies have focused on cannabinoids and alcohol-related effects in the CNS; however, the role CBRs play on alcohol effects in the immune system has not been elucidated yet. Since alcohol can affect immune responses and have detrimental effects on immune cells such as dendritic cells (DCs), we hypothesize that alcohol can exert its effects on DCs by modulating changes in CBRs, which in turn can regulate important DC functions such as cytokine production.

Methods: Therefore, we studied the expression of CNR1 and CNR2, and the novel cannabinoid G protein-coupled receptor (GPCR) 55 (GPR55) in human monocyte-derived dendritic cells (MDDCs) from alcohol users. CNR1, CNR2, and GPR55 genes were measured by qRT-PCR and protein by flow cytometry. MDDCs from alcohol users show significantly higher levels of CNR2 and GPR55 compared to MDDCs from non-users. These findings were further confirmed using MDDCs treated with alcohol. Inflammatory cytokines were measured in EtOH-treated and non-treated cells by antibody array.

Results: Functional effects of CBRs on MDDCs were shown by CB2 and GPR55 siRNA transfection. Transfected EtOH-treated cells showed significantly higher levels of proinflammatory cytokine production as measured by IL-1β expression. Our results provide insights into alcohol mechanisms of DC regulation and show, for the first time, that alcohol is inducing CNR2 and GPR55 in human DCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818789PMC
http://dx.doi.org/10.1016/j.drugalcdep.2013.08.023DOI Listing

Publication Analysis

Top Keywords

alcohol users
12
cnr2 gpr55
12
alcohol
10
effects immune
8
dendritic cells
8
cnr1 cnr2
8
gpr55 human
8
mddcs alcohol
8
higher levels
8
effects
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!