Background: In Taiwan, two rotavirus vaccines are available on the private market, but are not included in the National Immunization Program (NIP). To help assess whether to include rotavirus vaccines in the NIP, we examined the potential impact and cost-effectiveness of vaccination, from the health care system perspective alone.

Methods: We used a Microsoft Excel-based model to assess rotavirus vaccination impact on rotavirus disease burden and the cost-effectiveness of 2-dose and 3-dose vaccination programs among a birth cohort of Taiwanese children followed for 5 years. Principal model inputs included data on rotavirus disease burden and related healthcare costs, vaccination cost and coverage rates, and vaccine efficacy. Principal model outputs included the number of health-related events and costs averted and incremental cost per disability-adjusted life year averted.

Results: A national rotavirus vaccination program, regardless of number of doses per course, would prevent 4 deaths, >10,500 hospitalizations, and >64,000 outpatient visits due to rotavirus infection among children <5 years annually, resulting in ~80%, 90%, and 70% declines in these outcomes, respectively, and a ~$7 million decline in annual medical costs. A national 2- or 3-dose vaccination program would be cost-saving up to $13.30/dose ($26.60/course) or $7.98/dose ($23.94/course), respectively; very cost-effective up to $24.08 per dose ($48.16/course) or $15.18/dose ($45.54/course), respectively; and cost-effective up to $45.65/dose ($91.30/course) or $29.59/dose ($88.77/course), respectively.

Conclusions: A national rotavirus vaccination program could substantially reduce rotavirus disease burden among Taiwanese children and be potentially cost-effective, depending on the vaccine price.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2013.08.103DOI Listing

Publication Analysis

Top Keywords

rotavirus vaccination
12
vaccination programs
8
rotavirus vaccines
8
rotavirus disease
8
disease burden
8
principal model
8
rotavirus
7
vaccination
6
cost-effectiveness rotavirus
4
programs taiwan
4

Similar Publications

First identification and whole genome characterization of rotavirus C in pigs in Zambia.

Virology

December 2024

Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia. Electronic address:

Rotavirus C (RVC) causes acute gastroenteritis in neonatal piglets. Despite the clinical importance of RVC infection, the distribution and prevalence in pig populations in most African countries remains unknown. In this study, we identified RVC in Zambian pigs by metagenomic analysis.

View Article and Find Full Text PDF

Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.

View Article and Find Full Text PDF

Rotavirus, a leading cause of severe acute gastroenteritis in children, is largely preventable through immunization with two internationally licensed oral rotavirus vaccines (RVVs) included in national programs across over 100 countries. These RVVs are administered in either two (Rotarix™; 2D-RV) or three (RotaTeq®; 3D-RV) doses. We aimed to assess the global coverage, completion, and compliance of 2D-RV and 3D-RV in various settings, and to identify factors influencing vaccine coverage.

View Article and Find Full Text PDF

A New Conceptual Framework for Enhancing Vaccine Efficacy in Malnourished Children.

J Multidiscip Healthc

December 2024

Department of Epidemiology and Biostatistics, School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.

Background: Malnourished children in low- and middle-income countries (LMICs) often exhibit reduced vaccine efficacy, particularly for oral vaccines like polio and rotavirus, due to impaired immune responses. Nutritional deficiencies, such as in vitamin A and zinc, along with environmental factors like poor sanitation, exacerbate this issue. Existing research has explored the individual impacts of malnutrition on vaccine outcomes, but a comprehensive framework that integrates nutritional, immune, and environmental factors has been lacking.

View Article and Find Full Text PDF

Rotavirus vaccine appears to perform sub-optimally in countries with higher rotavirus burden. We hypothesized that differences in the magnitude of rotavirus exposures may bias vaccine efficacy (VE) estimates, so true differences in country-specific rotavirus VE would be exaggerated without accommodating differences in exposure. We estimated VE against any-severity and severe rotavirus gastroenteritis (RVGE) using Poisson regression models fit to pooled individual-level data from Phase II and III monovalent rotavirus vaccine trials conducted between 2000 and 2012.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!