This study resulted in a model-averaging methodology that predicts crash injury risk using vehicle, demographic, and morphomic variables and assesses the importance of individual predictors. The effectiveness of this methodology was illustrated through analysis of occupant chest injuries in frontal vehicle crashes. The crash data were obtained from the International Center for Automotive Medicine (ICAM) database for calendar year 1996 to 2012. The morphomic data are quantitative measurements of variations in human body 3-dimensional anatomy. Morphomics are obtained from imaging records. In this study, morphomics were obtained from chest, abdomen, and spine CT using novel patented algorithms. A NASS-trained crash investigator with over thirty years of experience collected the in-depth crash data. There were 226 cases available with occupants involved in frontal crashes and morphomic measurements. Only cases with complete recorded data were retained for statistical analysis. Logistic regression models were fitted using all possible configurations of vehicle, demographic, and morphomic variables. Different models were ranked by the Akaike Information Criteria (AIC). An averaged logistic regression model approach was used due to the limited sample size relative to the number of variables. This approach is helpful when addressing variable selection, building prediction models, and assessing the importance of individual variables. The final predictive results were developed using this approach, based on the top 100 models in the AIC ranking. Model-averaging minimized model uncertainty, decreased the overall prediction variance, and provided an approach to evaluating the importance of individual variables. There were 17 variables investigated: four vehicle, four demographic, and nine morphomic. More than 130,000 logistic models were investigated in total. The models were characterized into four scenarios to assess individual variable contribution to injury risk. Scenario 1 used vehicle variables; Scenario 2, vehicle and demographic variables; Scenario 3, vehicle and morphomic variables; and Scenario 4 used all variables. AIC was used to rank the models and to address over-fitting. In each scenario, the results based on the top three models and the averages of the top 100 models were presented. The AIC and the area under the receiver operating characteristic curve (AUC) were reported in each model. The models were re-fitted after removing each variable one at a time. The increases of AIC and the decreases of AUC were then assessed to measure the contribution and importance of the individual variables in each model. The importance of the individual variables was also determined by their weighted frequencies of appearance in the top 100 selected models. Overall, the AUC was 0.58 in Scenario 1, 0.78 in Scenario 2, 0.76 in Scenario 3 and 0.82 in Scenario 4. The results showed that morphomic variables are as accurate at predicting injury risk as demographic variables. The results of this study emphasize the importance of including morphomic variables when assessing injury risk. The results also highlight the need for morphomic data in the development of human mathematical models when assessing restraint performance in frontal crashes, since morphomic variables are more "tangible" measurements compared to demographic variables such as age and gender.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2013.08.020 | DOI Listing |
JAMA Netw Open
October 2024
Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor.
PLoS One
November 2022
Morphomics Analysis Group, University of Michigan, Ann Arbor, MI, United States of America.
Background: CT contrast media improves vessel visualization but can also confound calcification measurements. We evaluated variance in aorta attenuation from varied contrast-enhancement scans, and quantified expected plaque detection errors when thresholding for calcification.
Methods: We measured aorta attenuation (AoHU) in central vessel regions from 10K abdominal CT scans and report AoHU relationships to contrast phase (non-contrast, arterial, venous, delayed), demographic variables (age, sex, weight), body location, and scan slice thickness.
Nat Neurosci
October 2022
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification of a spectrum of context-dependent morphological phenotypes. Here we develop MorphOMICs, a topological data analysis approach, which enables semiautomatic mapping of microglial morphology into an atlas of cue-dependent phenotypes and overcomes feature-selection biases and biological variability.
View Article and Find Full Text PDFJ Anat
December 2022
Morphomics Analysis Group, University of Michigan, Ann Arbor, Michigan, USA.
Rib fractures are a common and serious outcome of blunt thoracic trauma and their likelihood is greater in older individuals. Osteoporotic bone loss is a well-documented aging phenomenon with sex-specific characteristics, but within rib bones, neither baseline maps of regional thickness nor the rates of bone thinning with age have been quantified across whole ribs. This study presents such data from 4014 ribs of 240 adult subjects aged 20-90.
View Article and Find Full Text PDFPharmacotherapy
September 2020
Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.
Objective: The objective of this review is to discuss the therapeutic use and differential treatment response to Levo-carnitine (l-carnitine) treatment in septic shock, and to demonstrate common lessons learned that are important to the advancement of precision medicine approaches to sepsis. We propose that significant interpatient variability in the metabolic response to l-carnitine and clinical outcomes can be used to elucidate the mechanistic underpinnings that contribute to sepsis heterogeneity.
Methods: A narrative review was conducted that focused on explaining interpatient variability in l-carnitine treatment response.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!