The comparative DNA binding properties and cytotoxic activity of CDPIn methyl esters (n = 1-5) vs. PDE-In methyl esters (n = 1-3) are detailed in studies which provide experimental evidence for the intrinsic importance of stabilizing hydrophobic binding and non-covalent van der Waals contacts dominant in the CC-1065/B-DNA minor groove binding. High affinity minor groove binding to DNA was established through: (1) the observation of CDPI3 binding (UV) but not unwinding of supercoiled DNA (phi 174 RFI DNA) thus excluding intercalative binding; (2) the observation of CDPI3 binding to T4 phage DNA (UV, delta Tm) in which the major groove is occluded by glycosylation thus excluding major groove binding; (3) the observation of salt (Na+) concentration independent high affinity CDPI3 binding to poly(dA . poly(dT) thus excluding simple electrostatic binding to the DNA phosphate backbone; and further inferred through (4) the observation of an intense induced dichroism (ICD, poly(dA) . poly(dT) and poly(dG) . poly(dC) [phi]23(358) = 24,000 and 23,500). This high affinity minor groove binding is sufficient to produce a potent cytotoxic effect.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0009-2797(90)90107-x | DOI Listing |
J Comput Chem
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey. Electronic address:
This study investigated the binding mechanism of taxifolin (TA), daidzein (DA), and S-equol (SQ) flavonoids with fish sperm double helix DNA (dsDNA) under the simulated physiological pH condition using UV-Vis and photoluminescence spectroscopy, as well as viscometric methods. Binding constants (K) for the flavonoids to dsDNA were determined as 1.8 × 10 M for SQ, 1.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!