Gliomatosis cerebri (GC) is a challenging tumor, considered to have a poor prognosis and poor response to treatments. The purpose of this study is to better understand glial tumor metabolism and post chemotherapy, radiotherapy and antiangiogenic variations in a longitudinal study to determine cerebral variation in MRS area, amplitude, and ratios of metabolites and spectral profiles during a five year longitudinal follow-up in 14 patients with gliomatosis without initial hyperperfusion and treated with chemotherapy (Temozolomide (Temodal(®))), radiotherapy and subsequent antiangiogenic therapy. The study also aimed to detect changes in infiltration, proliferation, lipids or glycolytic metabolism, as these changes could be monitored longitudinally in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI), spectroscopy (MRS) and MR perfusion. Most patients had first initial clinical and MRS improvement and stable MRI. After 12 to 24 chemotherapy treatment cycles MRS usually showed an increase in the Cho/Cr ratio (proliferation) and sometimes contrast enhancements. Later, the patients showed clinical deterioration and radiotherapy was started. There was an improvement with radiotherapy that lasted nine to 18 months. This was followed by a worsening that led to try antiangiogenic therapy. Later in the evolution for three patients with hyperperfusion this symptom disappeared, but proliferation, infiltration and glycolytic metabolism remained at a high level. Spectroscopic and metabolic changes often occur well before clinical deterioration and sometimes before improvement. Therefore, MRS could be more sensitive and could detect changes earlier than MRI and is sometimes predictive. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and could lead to better understanding of therapeutic response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/197140091102400309 | DOI Listing |
Cytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA.
A 65-year-old patient presented with recurrent, locally advanced poorly differentiated thyroid cancer despite 2 neck surgeries, and with newly diagnosed brain and skull base metastases. He was treated with palliative stereotactic radiosurgery to the brain and skull base lesions. Thereafter, as no targetable genetic alteration was identified and antiangiogenic multikinase inhibitors were deemed at high risk of hemorrhagic complications, off-label systemic therapies were considered.
View Article and Find Full Text PDFAME Case Rep
November 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
Background: Pulmonary epithelioid hemangioendothelioma (P-EHE) is a rare vascular tumor derived from mesenchymal cells with an incidence of about 1/1 million. The etiology remains unclear, and there are no established treatment guidelines. The tumor can occur in a variety of organs, among which the liver, lung and bone are the most commonly involved, with different clinical manifestations, mainly depending on the organ involved, but none of them is specific.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:
Background: Some cancer patients derive limited benefit from anti-angiogenic therapy or discontinuation due to adverse reactions. Vascular endothelial growth factor receptor 2 (VEGFR2) plays an important role in regulating angiogenesis in tumors. This study aims to evaluate the association of VEGFR2 polymorphisms with clinical outcomes of anti-angiogenic drugs (AADs) in cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!