Background: The rapid adoption of image-guidance in prostate intensity-modulated radiotherapy (IMRT) results in longer treatment times, which may result in larger intrafraction motion, thereby negating the advantage of image-guidance. This study aims to qualify and quantify the contribution of image-guidance to the temporal dependence of intrafraction motion during prostate IMRT.

Methods: One-hundred and forty-three patients who underwent conventional IMRT (n=67) or intensity-modulated arc therapy (IMAT/RapidArc, n=76) for localized prostate cancer were evaluated. Intrafraction motion assessment was based on continuous RL (lateral), SI (longitudinal), and AP (vertical) positional detection of electromagnetic transponders at 10 Hz. Daily motion amplitudes were reported as session mean, median, and root-mean-square (RMS) displacements. Temporal effect was evaluated by categorizing treatment sessions into 4 different classes: IMRTc (transponder only localization), IMRTcc (transponder + CBCT localization), IMATc (transponder only localization), or IMATcc (transponder + CBCT localization).

Results: Mean/median session times were 4.15/3.99 min (IMATc), 12.74/12.19 min (IMATcc), 5.99/5.77 min (IMRTc), and 12.98/12.39 min (IMRTcc), with significant pair-wise difference (p<0.0001) between all category combinations except for IMRTcc vs. IMATcc (p>0.05). Median intrafraction motion difference between CBCT and non-CBCT categories strongly correlated with time for RMS (t-value=17.29; p<0.0001), SI (t-value=-4.25; p<0.0001), and AP (t-value=2.76; p<0.0066), with a weak correlation for RL (t-value=1.67; p=0.0971). Treatment time reduction with non-CBCT treatment categories showed reductions in the observed intrafraction motion: systematic error (Σ)<0.6 mm and random error (σ)<1.2 mm compared with ≤0.8 mm and <1.6 mm, respectively, for CBCT-involved treatment categories.

Conclusions: For treatment durations >4-6 minutes, and without any intrafraction motion mitigation protocol in place, patient repositioning is recommended, with at least the acquisition of the lateral component of an orthogonal image pair in the absence of volumetric imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849088PMC
http://dx.doi.org/10.1186/1756-6649-13-4DOI Listing

Publication Analysis

Top Keywords

intrafraction motion
16
motion assessment
8
image-guidance temporal
8
temporal dependence
8
transponder localization
8
transponder cbct
8
motion
7
real-time prostate
4
prostate motion
4
image-guidance
4

Similar Publications

A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.

View Article and Find Full Text PDF

Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia.

Radiat Oncol J

December 2024

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Purpose: Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.

View Article and Find Full Text PDF

Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (< 500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a framework (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.

View Article and Find Full Text PDF

Intrafraction Patient Positional Uncertainty in Lung Stereotactic Ablative Radiotherapy with Abdominal Compression.

Pract Radiat Oncol

December 2024

Department of Radiation Oncology, Willis Knighton Cancer Center, 2600 Kings Highway, Shreveport, Louisiana, USA 71103 &, Department of Clinical Research, University of Jamestown, Fargo, ND, USA. Electronic address:

Purpose: Motion management presents a significant challenge in thoracic stereotactic ablative radiotherapy (SABR). Currently, a 5.0 mm standard planning target volume (PTV) margin is widely used to ensure adequate dose to the tumor.

View Article and Find Full Text PDF

Background: Respiratory motion is a challenge for accurate radiotherapy that may be mitigated by real-time tracking. Commercial tracking systems utilize a hybrid external-internal correlation model (ECM), integrating continuous external breathing monitoring with sparse X-ray imaging of the internal tumor position.

Purpose: This study investigates the feasibility of using the next generation reservoir computing (NG-RC) model as a hybrid ECM to transform measured external motions into estimated 3D internal motions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!