The present study elucidates molecular interactions of human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LPO) with a novel natural ligand Galangin (GAL); and also with the well-known ligands Bisnorcymserine (BNC) and Cymserine for comparison. Docking between these ligands and enzymes were performed using 'Autodock4.2'. It was found that hydrophobic interactions play an important role in the correct positioning of BNC within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking while hydrogen bonds are significant in case of cymserine for the same. However, only polar interactions are significant in the correct positioning of GAL within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking. Such information may aid in the design of versatile AChE, BuChE and 5 LPO-inhibitors, and is expected to aid in safe clinical use of above ligands. Scope still remains in the determination of the three-dimensional structure of AChE-GAL, BuChE-GAL and 5-LPO-GAL complex by X-ray crystallography to certify the described data. Moreover, the present study confirms that GAL is a more efficient inhibitor of human brain AChE compared to BNC and cymserine, while in case of 5-LPO and human brain BuChE, BNC is a more efficient inhibitor compared to GAL and cymserine with reference to ΔG and Ki values.

Download full-text PDF

Source
http://dx.doi.org/10.2174/18715273113126660162DOI Listing

Publication Analysis

Top Keywords

human brain
12
ache buche
12
novel natural
8
natural ligand
8
ligand galangin
8
bnc cymserine
8
correct positioning
8
'catalytic site'
8
site' ache
8
buche 5-lpo
8

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

When we touch ourselves, the pressure appears weaker compared to when someone else touches us, an effect known as sensory attenuation. Sensory attenuation is spatially tuned and does only occur if the positions of the touching and the touched body-party spatially coincide. Here, we ask about the contribution of visual or proprioceptive signals to determine self-touch.

View Article and Find Full Text PDF

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!