Movements with both hands are essential to our everyday life, and it has been shown that performing asymmetric bimanual movements produces an interference effect between hands. There have been many studies--using varying methods--investigating the development of bimanual movements that show that this skill continues to evolve during childhood and adolescence. In the current study we used a spatial bimanual task to delineate the development of bimanual movements not only during different stages of childhood but also during late stages of adulthood. Furthermore, we used the same task as a window to observe the involvement of motor imagery through the same age groups. For this study we recruited participants from 4 different age groups and asked them to perform congruent and noncongruent bimanual movements in a Real condition, where participants moved both hands, and in an Imagery condition, where they had to imagine 1 hand's movements while actually using the other hand. Our results showed that, with actual movement execution, the interference between motor programs of the 2 hands is higher in children (6-10 years old) than in younger adults (20-30 years old), while it tends to increase again in the elderly adults (60-80 years old). Interestingly, in the Imagery condition, the interference was present only among 10-year-old and 20- to 30-year-old participants, suggesting that motor imagery, not yet developed in young children and compromised by age in the elderly subjects, did not modulate motor performance in these last 2 groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0034482 | DOI Listing |
Oper Neurosurg (Hagerstown)
July 2024
Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada.
Background And Objectives: Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment.
View Article and Find Full Text PDFeNeuro
January 2025
Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited.
View Article and Find Full Text PDFBehav Sci (Basel)
December 2024
Biomechanics & Movement Science Program, Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA.
This study aimed to explore whether early developmental abilities are related to future executive function (EF) in children with motor delays. Fourteen children with motor delays ( = 10.76, = 2.
View Article and Find Full Text PDFInt J Obstet Anesth
December 2024
Department of Biomedical Engineering and the School of Brain Sciences and Cognition, Ben Gurion University of the Negev, Beer Sheva, Israel.
Background: Correct identification of the epidural space requires extensive training for technical proficiency. This study explores a novel bimanual haptic simulator designed for the precise insertion of an epidural needle based on loss-of-resistance (LOR) detection, providing realistic dual-hand force feedback.
Methods: The simulator, equipped with two haptic devices connected to a Tuohy needle and an LOR syringe, was designed to simulate the tissues' resistive forces felt by the user during the procedure, offer anatomical variability and record detailed performance metrics for personalized feedback.
Int J Psychophysiol
December 2024
Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Spain.
In current neuroscience, there is a pressing need to evaluate the effectiveness of treatments for motor and cognitive disorders. In addition, there is a gap in the literature on assessing this type of rehabilitation. This review proposes using Movement-Related Potentials (MRPs) as a relevant marker for such evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!