[Vibrational temperature of plasma plume in atmospheric pressure air].

Guang Pu Xue Yu Guang Pu Fen Xi

Key Laboratory of Photo-Electronics Information Materials of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Published: July 2013

A tri-electrode discharge device was designed in a dielectric barrier discharge configurations to generate a fairly large volume plasma plume in atmospheric pressure air. The discharge characteristics of the plasma plume were investigated by an optical method. The discharge emission from the plasma plume was collected by a photomultiplier tube. It was found that the number of discharge pulse per cycle of the applied voltage increased with increasing the peak value of the applied voltage. The emission spectra of the plasma plume were collected by a spectrometer. The vibrational temperature was calculated by fitting the experimental data to the theoretical one. Results showed that the vibrational temperature of the plasma plume decreases with increasing the U(p). Spatially resolved measurement of the vibrational temperature was also conducted on the plasma plume with the same method. Results showed that the vibrational temperature increases firstly and then decreases with increasing distance from the nozzle. The vibrational temperature reachs its maximum when the distance is 5.4 mm from the nozzle. These experimental phenomena were analyzed qualitatively based on the discharge theory. These results have important significance for the industrial applications of the plasma plume in atmospheric pressure air.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasma plume
32
vibrational temperature
20
plume atmospheric
12
atmospheric pressure
12
plasma
8
temperature plasma
8
plume
8
pressure air
8
plume collected
8
applied voltage
8

Similar Publications

Ammonium dinitramide (ADN) is a new green oxidant, which is a kind of high-energy ionic liquid and has been widely used in the field of liquid propulsion. When it is used in laser plasma propulsion, its poor absorption coefficient significantly limits its application. To address the issue, this paper investigates the effects of the content of the infrared dye and the laser energy density on the laser propulsion performance of an ADN-based liquid propellant.

View Article and Find Full Text PDF

Mesh-Collision Microtube Plasma Ion Source for Direct Mass Spectrometry Analysis.

Anal Chem

January 2025

Chinese Academy of Inspection and Quarantine, Beijing 100176, China.

Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.

View Article and Find Full Text PDF

A previous companion paper introduced a current pathways model that represents the electrical coupling between the Hall effect thruster (HET) and the ground-based vacuum test facility operational environment. In this work, we operated a 7-kW class HET at 4.5 kW, 15 A and 6 kW, 20 A on krypton to quantify aspects of the current pathways model to characterize the role metal vacuum chambers play in the thruster's discharge circuit as a function of discharge current.

View Article and Find Full Text PDF

The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.

View Article and Find Full Text PDF

Gas-phase oxidation in a laser-produced plasma is significantly influenced by the availability of oxygen in and around the plume. In this study, we investigate the role of target-derived and ambient oxygen on AlO formation in plasmas generated from aluminum (Al) and AlO targets in air and argon, respectively. Our results highlight that gas-phase oxidation occurs early during the evolution of AlO plasmas in argon, in contrast to Al plasmas in air, where the initial exclusion of oxygen from the plume delays the chemical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!