The effect of polychlorinated biphenyls on the song of two passerine species.

PLoS One

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America ; Department of Biodiversity, Earth, and Environmental Science; Drexel University, Philadelphia, Pennsylvania, United States of America.

Published: June 2014

Polychlorinated biphenyls (PCBs) are synthetic chemical pollutants with demonstrated detrimental toxic and developmental effects on humans and wildlife. Laboratory studies suggest that PCBs influence behavior due to their effects on endocrine and neurological systems, yet little is known about the behavioral consequences of sublethal PCB exposure in the field. Additionally, specific PCB congener data (in contrast to total PCB load) is necessary to understand the possible effects of PCBs in living organisms since number and position of chlorine substitution in a PCB molecule dictates the toxicity and chemical fate of individual PCB congeners. We non-lethally investigated total PCB loads, congener specific PCB profiles, and songs of black-capped chickadees (Poecile atricapillus) and song sparrows (Melospiza melodia) along a historical PCB gradient at the Hudson River in New York State. Our results indicate that black-capped chickadees and song sparrows have higher total blood PCBs in regions with higher historic PCB contamination. The two bird species varied substantially in their congener-specific PCB profiles; within sites, song sparrows showed a significantly higher proportion of lower chlorinated PCBs, while black-capped chickadees had higher proportions of highly chlorinated PCBs. In areas of PCB pollution, the species-specific identity signal in black-capped chickadee song varied significantly, while variation in song sparrow trill performance was best predicted by the mono-ortho PCB load. Thus, PCBs may affect song production, an important component of communication in birds. In conclusion, we suggest that the ramifications of changes in song quality for bird populations may extend the toxic effects of environmental PCB pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776824PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073471PLOS

Publication Analysis

Top Keywords

pcb
13
black-capped chickadees
12
song sparrows
12
polychlorinated biphenyls
8
song
8
specific pcb
8
total pcb
8
pcb load
8
pcb profiles
8
sparrows higher
8

Similar Publications

The widespread adoption of electronic devices has enhanced living standards but has also led to a surge in electronic waste (e-waste), creating serious environmental and health challenges. Although various methods exist to recover valuable metals from e-waste, each has notable drawbacks. Among these, chemical leaching with aqua regia is widely used but is both highly corrosive and hazardous.

View Article and Find Full Text PDF

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) in surface soils and street dusts in Detroit, Michigan.

Sci Total Environ

January 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States. Electronic address:

Polychlorinated naphthalenes (PCNs) and polychlorinated biphenyls (PCBs) are toxic contaminants that were produced and used in large quantities for their stability, inertness, and other desirable electrical, cooling, and lubricating properties. Due to their environmental persistence and improper disposal, these contaminants have become broadly distributed in the environment. This study examines the levels, composition, distribution, and potential sources of these compounds in surface soils and street dusts collected at 19 residential and industrial areas in Detroit, Michigan.

View Article and Find Full Text PDF

Background: Vaccine adjuvants are components that enhance immune responses to an antigen. Given the importance of adjuvants, research on novel adjuvants with higher efficacy and fewer adverse effects remains crucial. ( sp.

View Article and Find Full Text PDF

Effect of polystyrene micro/nanoplastics on PCBs removal in constructed wetlands planted with Myriophyllum aquaticum.

Environ Res

January 2025

State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCB removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood.

View Article and Find Full Text PDF

Distribution and bioconcentration of semivolatile organic compounds (SVOCs) in soils and vascular plant Colobanthus quitensis from Sub-Antarctic and Antarctic regions.

Sci Total Environ

January 2025

Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA; Data Observatory Foundation, Santiago, Chile. Electronic address:

Semi-volatile organic compounds (SVOCs) are widely distributed across the globe, including polar regions. This study investigates the distribution and bioconcentration of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in soils and Colobanthus quitensis, while also estimating potential emission sources. Results indicated high concentrations of PAHs in soils and plants from the Sub-Antarctic region, while OCPs and PCBs were more prevalent in the Antarctic region, with higher contaminant concentrations found in soils than in plant tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!