The investigation of microcirculation is an important task in biomedical and physiological research because the microcirculation information, such as flow velocity and vessel density, is critical to monitor human conditions and develop effective therapies of some diseases. As one of the tasks of the microcirculation study, red blood cell (RBC) tracking presents an effective approach to estimate some parameters in microcirculation. The common method for RBC tracking is based on spatiotemporal image analysis, which requires the image to have high qualification and cells should have fixed velocity. Besides, for in vivo cell tracking, cells may disappear in some frames, image series may have spatial and temporal distortions, and vessel distribution can be complex, which increase the difficulties of RBC tracking. In this paper, we propose an optical flow method to track RBCs. It attempts to describe the local motion for each visible point in the frames using a local displacement vector field. We utilize it to calculate the displacement of a cell in two adjacent frames. Additionally, another optical flow-based method, scale invariant feature transform (SIFT) flow, is also presented. The experimental results show that optical flow is quite robust to the case where the velocity of cell is unstable, while SIFT flow works well when there is a large displacement of the cell between two adjacent frames. Our proposed methods outperform other methods when doing in vivo cell tracking, which can be used to estimate the blood flow directly and help to evaluate other parameters in microcirculation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990667PMC
http://dx.doi.org/10.1109/JBHI.2013.2281915DOI Listing

Publication Analysis

Top Keywords

cell tracking
12
optical flow
12
rbc tracking
12
red blood
8
blood cell
8
parameters microcirculation
8
vivo cell
8
displacement cell
8
cell adjacent
8
adjacent frames
8

Similar Publications

Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis.

Pharmaceutics

January 2025

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases.

View Article and Find Full Text PDF

Protein S-palmitoylation is the process by which a palmitoyl fatty acid is attached to a cysteine residue of a protein via a thioester bond. A range of methodologies are available for the detection of protein S-palmitoylation. In this study, two methods for the S-palmitoylation of different proteins were compared after metabolic labeling of cells with 15-hexadecynoic acid (15-YNE) to ascertain their relative usefulness.

View Article and Find Full Text PDF

An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.

View Article and Find Full Text PDF

: Developing ex vivo models that replicate immune-tumor interactions with high fidelity is essential for advancing immunotherapy research, as traditional two-dimensional in vitro systems often lack the complexity required to fully represent these interactions. : In this study, we establish a comprehensive 3D redirect lysis (3D-RDL) assay using colorectal cancer spheroids and adult stem cell-derived, healthy human organoids to evaluate the efficacy and safety profile of , a bispecific antibody targeting carcinoembryonic antigens (CEAs) on cancer cells and CD3 on T cells. This model allows us to assess cytotoxic activity and immune responses, capturing variations in therapeutic response not observable in simpler systems.

View Article and Find Full Text PDF

Background: In normal prostate cells, receptors for oxytocin (OT), a peptide involved in regulating prostate growth are sequestered within membrane microdomains called caveolae. During cancer progression, polymerase-transcript-release factor (PTRF) is downregulated, caveolae structures are lost and receptors move onto the cell membrane. This study investigated whether proteins responsible for caveolae formation were affected by the OT peptide, also, how OT treatment affected oxytocin receptor (OTR) movement within living cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!