The GM2 gangliosidoses are progressive neurodegenerative disorders due to defects in the lysosomal β-N-acetylhexosaminidase system. Accumulation of β-hexosaminidases A and B substrates is presumed to cause this fatal condition. An authentic mouse model of Sandhoff disease (SD) with pathological characteristics resembling those noted in infantile GM2 gangliosidosis has been described. We have shown that expression of β-hexosaminidase by intracranial delivery of recombinant adeno-associated viral vectors to young adult SD mice can prevent many features of the disease and extends lifespan. To investigate the nature of the neurological injury in GM2 gangliosidosis and the extent of its reversibility, we have examined the evolution of disease in the SD mouse; we have moreover explored the effects of gene transfer delivered at key times during the course of the illness. Here we report greatly increased survival only when the therapeutic genes are expressed either before the disease is apparent or during its early manifestations. However, irrespective of when treatment was administered, widespread and abundant expression of β-hexosaminidase with consequent clearance of glycoconjugates, α-synuclein and ubiquitinated proteins, and abrogation of inflammatory responses and neuronal loss was observed. We also show that defects in myelination occur in early life and cannot be easily resolved when treatment is given to the adult brain. These results indicate that there is a limited temporal opportunity in which function and survival can be improved-but regardless of resolution of the cardinal pathological features of GM2 gangliosidosis, a point is reached when functional deterioration and death cannot be prevented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888261PMC
http://dx.doi.org/10.1093/hmg/ddt459DOI Listing

Publication Analysis

Top Keywords

gm2 gangliosidosis
12
expression β-hexosaminidase
8
reversibility neuropathology
4
neuropathology tay-sachs-related
4
tay-sachs-related diseases
4
gm2
4
diseases gm2
4
gm2 gangliosidoses
4
gangliosidoses progressive
4
progressive neurodegenerative
4

Similar Publications

GM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in encoding the α-subunit and Sandhoff disease is caused by variants in encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable.

View Article and Find Full Text PDF

Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.

View Article and Find Full Text PDF

Background: The Montreal Cognitive assessment (MoCA) is a well-validated global cognitive screening instrument. Its validity in progressive supranuclear palsy (PSP) has not been assessed.

Objectives: To evaluate the MoCA as an outcome measure in PSP clinical trials.

View Article and Find Full Text PDF

Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.

View Article and Find Full Text PDF

The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!