Charged chromophores based on heteroaromatic cations were prepared by reaction of alkylazinium salts with N-heteroarylstannanes under Stille conditions. This approach provides easy access to potential single donor D-A(+) chromophores in which the acceptor moiety A(+) is the pyridinium cation and the donors are different π-excessive N-heterocycles. The β hyperpolarizabilities were measured in hyper-Rayleigh scattering experiments and the experimental data are supported by a theoretical analysis that combines a variety of computational procedures, including density functional theory and correlated Hartree-Fock-based methods. In some chromophores, the absence of a bridge between donor and acceptor fragments increases the NLO properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3ob41159a | DOI Listing |
Technologies (Basel)
December 2020
Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
The aim of this study was to perform a content analysis of electronic activity monitors that also evaluates utility features, code behavior change techniques included in the monitoring systems, and align the results with intervention functions of the Behaviour Change Wheel program planning model to facilitate informed device selection. Devices were coded for the implemented behavior change techniques and device features. Three trained coders each wore a monitor for at least 1 week from December 2019-April 2020.
View Article and Find Full Text PDFChemistryOpen
January 2025
Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia.
Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO at the Density Functional Theory level.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland.
Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling.
View Article and Find Full Text PDFTalanta
January 2025
Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801.
Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!