Graphene for energy solutions and its industrialization.

Nanoscale

Nokia Research Center, Broers Building, 21 J. J. Thomson Avenue, Cambridge, CB3 0FA, UK.

Published: November 2013

AI Article Synopsis

  • Graphene has gained significant attention in both academic and industrial sectors since the 2010 Nobel Prize, leading to a surge in publications, patents, and projects related to it.
  • Despite numerous reviews on graphene’s applications, few link its intrinsic properties to energy challenges, which are critical in achieving a sustainable global economy.
  • This review emphasizes recent advancements in pure graphene properties, explores innovative energy solutions, and analyzes the potential impact of government and industry support on the future graphene market.

Article Abstract

Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new 'industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr03312kDOI Listing

Publication Analysis

Top Keywords

graphene
11
graphene energy
8
energy solutions
8
properties
5
solutions industrialization
4
industrialization graphene
4
graphene attracts
4
attracts intensive
4
intensive interest
4
interest globally
4

Similar Publications

The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.

View Article and Find Full Text PDF

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.

View Article and Find Full Text PDF

Research into novel two-dimensional (2D) materials has boomed over the past decade, with a bewildering diversity of distinct properties being discovered. In this work, layered PtSe, grown by chemical vapor deposition and thermally converted to non-layered tetragonal PtSe, is experimentally and theoretically investigated. Notably, the resultant PtSe is distinctly metallic, which highlights the significance of sub-stoichiometric phases within transition metal dichalcogenide films.

View Article and Find Full Text PDF

Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!